Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

The base sequence encoded in nucleic acids yields significant structural and functional properties into the biopolymer. The resulting nucleic acid nanostructures provide the basis for the rapidly developing area of DNA nanotechnology. Advances in this field will be exemplified by discussing the following topics: (i) Hemin/G-quadruplex DNA nanostructures exhibit unique electrocatalytic, chemiluminescence and photophysical properties. Their integration with electrode surfaces or semiconductor quantum dots enables the development of new electrochemical or optical bioanalytical platforms for sensing DNA. (ii) The encoding of structural information into DNA enables the activation of autonomous replication processes that enable the ultrasensitive detection of DNA. (iii) By the appropriate design of DNA nanostructures, functional DNA machines, acting as “tweezers”, “walkers” and “stepper” systems, can be tailored. (iv) The self-assembly of nucleic acid nanostructures (nanowires, strips, nanotubes) allows the programmed positioning of proteins on the DNA templates and the activation of enzyme cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldaye, F. A., Palmer, A. L., & Sleiman, H. F. (2008). Assembling materials with DNA as the guide. Science, 321, 1795–1799.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, E. S., Dong, M., Nielsen, M. M., et al. (2009). Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Bath, J., & Turberfield, A. J. (2007). DNA nanomachines. Nature Nanotechnology, 2, 275–284.

    Article  PubMed  CAS  Google Scholar 

  • Bath, J., Green, S. J., Allen, K. E., & Turberfield, A. J. (2009). Mechanism for a directional, processive, and reversible DNA motor. Small, 5, 1513–1516.

    Article  PubMed  CAS  Google Scholar 

  • Beissenhirtz, M. K., & Willner, I. (2006). DNA-based machines. Organic and Biomolecular Chemistry, 4, 3392–3401.

    Article  PubMed  CAS  Google Scholar 

  • Breaker, R. R., & Joyce, G. F. (1994). A DNA enzyme that cleaves RNA. Chemistry and Biology, 1, 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Buranachai, C., Mckinney, S. A., & Ha, T. (2006). Single molecule nanometronome. Nano Letters, 6, 496–500.

    Article  PubMed  CAS  Google Scholar 

  • Cheglakov, Z., Weizmann, Y., Braunschweig, A. B., Wilner, O. I., & Willner, I. (2007). Increasing the complexity of periodic protein nanostructures by the rolling-circle amplified synthesis of aptamers. Angewandte Chemie (International ed. in English), 47, 126–130.

    Article  Google Scholar 

  • Dietz, H., Douglas, S. M., & Shih, W. M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science, 325, 725–730.

    Article  PubMed  CAS  Google Scholar 

  • Dittmer, W. U., Reuter, A., & Simmel, F. C. (2004). A DNA-based machine that can cyclically bind and release thrombin. Angewandte Chemie (International ed. in English), 43, 3550–3553.

    Article  CAS  Google Scholar 

  • Drummond, T. G., Hill, M. G., & Barton, J. K. (2003). Electrochemical DNA sensors. Nature Biotechnology, 21, 1192–1199.

    Article  PubMed  CAS  Google Scholar 

  • Elbaz, J., Wang, Z.-G., Orbach, R., & Willner, I. (2009). pH-stimulated concurrent mechanical activation of two DNA “tweezers”. A “SET-RESET” logic gate system. Nano Letters, 9, 4510–4514.

    Article  PubMed  CAS  Google Scholar 

  • Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R., Liu, X., & Willner, I. (2011). Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions and aptamer-substrate complexes using hemin/G-quadruplex and CdSe/ZnS quantum dots. Journal of the American Chemical Society, 133(30), 11597–11604.

    Article  PubMed  CAS  Google Scholar 

  • Fu, T. J., & Seeman, N. C. (1993). Symmetric immobile DNA branched junctions. Biochemistry, 32, 8062–8067.

    Article  PubMed  Google Scholar 

  • Han, X., Zhou, Z., Yang, F., & Deng, Z. (2008). Catch and release: DNA tweezers that can capture, hold, and release an object under control. Journal of the American Chemical Society, 130, 14414–14415.

    Article  PubMed  CAS  Google Scholar 

  • He, Y., & Liu, D. R. (2010). Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nature Nanotechnology, 5, 778–782.

    Article  PubMed  CAS  Google Scholar 

  • Keren, K., Berman, R. S., Buchstab, E., Sivan, U., & Braun, E. (2003). DNA-templated carbon nanotube field-effect transistor. Science, 302, 1380–1382.

    Article  PubMed  CAS  Google Scholar 

  • LaBean, T. H., Yan, H., Kopatsch, J., et al. (2000). Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. Journal of the American Chemical Society, 122, 1848–1860.

    Article  CAS  Google Scholar 

  • Lin, C., Liu, Y., Rinker, S., & Yan, H. (2006). DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem, 7, 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  • Lo, P. K., Karam, P., Aldaye, F. A., McLaughlin, C. K., Hamblin, G. D., Cosa, G., & Sleiman, H. F. (2010). Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nature Chemistry, 2, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Mathieu, F., Liao, S., Kopatsch, J., Wang, T., Mao, C., & Seeman, N. C. (2005). Six-helix bundles designed from DNA. Nano Letters, 5, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, G. (2009). The chemical biology of aptamers. Angewandte Chemie (International ed. in English), 48, 2672–2689.

    Article  CAS  Google Scholar 

  • Pelossof, G., Tel-Vered, R., Elbaz, J., & Willner, I. (2010). Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Analytical Chemistry, 82, 4396–4402.

    Article  PubMed  CAS  Google Scholar 

  • Phan, A. T., & Mergny, J. (2002). Human telomeric DNA: G-quadruplex, i-motif and Watson-crick double helix. Nucleic Acids Research, 30, 4618–4625.

    Article  PubMed  CAS  Google Scholar 

  • Rothemund, P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature, 440, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, N. C. (2007). An overview of structural DNA nanotechnology. Molecular Biotechnology, 37, 246–257.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, N. C. (2010). Structural DNA nanotechnology: Growing along with nano letters. Nano Letters, 10, 1971–1978.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., & Yan, H. (2009). Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 323, 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Sharon, E., Freeman, R., & Willner, I. (2010). CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Analytical Chemistry, 82, 7073–7077.

    Article  PubMed  CAS  Google Scholar 

  • Shih, J., & Pierce, N. A. (2004). A synthetic DNA walker for molecular transport. Journal of the American Chemical Society, 126, 10834–10835.

    Article  Google Scholar 

  • Simmel, F. C. (2007). Towards biomedical applications for nucleic acid nanodevices. Nanomedicine, 2, 817–830.

    Article  PubMed  CAS  Google Scholar 

  • Teller, C., & Willner, I. (2010). Functional nucleic acid nanostructures and DNA machines. Current Opinion in Biotechnology, 21, 376–391.

    Article  PubMed  CAS  Google Scholar 

  • Tombelli, S., & Mascini, M. (2009). Aptamers as molecular tools for bioanalytical methods. Current Opinion in Molecular Therapeutics, 11, 179–188.

    PubMed  CAS  Google Scholar 

  • Tuerk, C., & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-G., Elbaz, J., Remacle, F., Levine, R. D., & Willner, I. (2010). All-DNA finite-state automata with finite memory. Proceedings of the National Academy of Sciences of the United States of America, 107, 21996–22001.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F., Elbaz, J., Teller, C., & Willner, I. (2011a). Amplified detection of DNA through an autocatalytic and catabolic DNAzyme-mediated process. Angewandte Chemie (International ed. in English), 50, 295–299.

    Article  CAS  Google Scholar 

  • Wang, Z.-G., Elbaz, J., & Willner, I. (2011b). DNA machines: Bipedal walker and stepper. Nano Letters, 11, 304–309.

    Article  PubMed  CAS  Google Scholar 

  • Weizmann, Y., Beissenhirtz, M. K., Cheglakov, Z., Nowarski, R., Kotler, M., & Willner, I. (2006). A virus spotlighted by an autonomous DNA machine. Angewandte Chemie (International ed. in English), 45, 7384–7388.

    Article  CAS  Google Scholar 

  • Willner, I., & Zayats, M. (2007). Electronic aptamer-based sensors. Angewandte Chemie (International ed. in English), 46, 6408–6418.

    Article  CAS  Google Scholar 

  • Willner, I., Shlyahovsky, B., Zayats, M., & Willner, B. (2008). DNAzymes for sensing, nanobiotechnology and logic gate applications. Chemical Society Reviews, 37, 1153–1165.

    Article  PubMed  CAS  Google Scholar 

  • Wilner, O. I., Weizmann, Y., Gill, R., Lioubashevski, O., Freeman, R., & Willner, I. (2009). Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotechnology, 4, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Wilner, O. I., Henning, A., Shlyahovsky, B., & Willner, I. (2010). Covalently linked DNA nanotubes. Nano Letters, 10, 1458–1465.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y., Pavlov, V., Gill, R., & BourenkoT, W. I. (2004). Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. ChemBioChem, 5, 374–379.

    Article  PubMed  CAS  Google Scholar 

  • Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C., & Neumann, J. L. (2000). A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, W., Gao, Y., Srinivas, A., et al. (2006). DNA polymerization on gold nanoparticles through rolling circle ­amplification: Towards novel scaffolds for three-dimensional periodic nanoassemblies. Angewandte Chemie (International ed. in English), 45, 2409–2413.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Our research in DNA nanotechnology is supported by the Israel Science Foundation and the EC projects NANOGNOSTICS and ECCell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itamar Willner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wilner, O.I., Willner, B., Willner, I. (2012). DNA Nanotechnology. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_10

Download citation

Publish with us

Policies and ethics