Skip to main content

Neuroblastoma: Role of GATA Transcription Factors

  • Chapter
  • First Online:
Neuroblastoma

Part of the book series: Pediatric Cancer ((PECA,volume 1))

  • 1793 Accesses

Abstract

GATA transcription factors, important for cell differentiation and proliferation, have been detected in various normal tissues, but also in neoplasia. Deregulation or mutation of transcription factors might be crucial for the formation of neuroblastoma, a tumor deriving from the developing sympathetic nervous system. While GATA-2, -3, -6 and FOG-2 have been described in the central and peripheral nervous system with GATA-2 and -3 being essential for the development of sympathetic neurons, GATA-4 is not expressed in the normal developing or adult brain nor in the sympathetic nervous system. Microarray analyses of a large cohort of primary neuroblastoma specimens (n = 251) confirmed GATA-4 expression in this malignancy with higher mRNA levels in MYCN-amplified (n = 32) vs. MYCN-nonamplified (n = 218) tumors. In contrast, GATA-2, -3, -6 and FOG-2 were highly expressed in tumors with low-risk features, as in MYCN-nonamplified tumors, tumors of localized stages and of stage 4S, tumors of younger patients and those with a lower risk according to a highly accurate gene-expression based classifier (PAM algorithm). Together, the data provide further evidence that proteins which are essential for the development of the sympathetic nervous system are downregulated in aggressive but not in favorable neuroblastoma. First functional data recently indicated that GATA-3 regulates cellular proliferation of neuroblastoma cells by activating Cyclin D1. In contrast, GATA-4 appears to be induced during tumorigenesis and might contribute to neuroblastoma pathogenesis. Thus, future studies will elucidate the implication of GATA factors and FOG-2 in neuroblastoma biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H, Ren CY, Yuasa Y, Herman JG, Baylin SB (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23:8429–8439

    Article  PubMed  CAS  Google Scholar 

  • Aoyama M, Ozaki T, Inuzuka H, Tomotsune D, Hirato J, Okamoto Y, Tokita H, Ohira M, Nakagawara A (2005) LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Cancer Res 65:4587–4597

    Article  PubMed  CAS  Google Scholar 

  • Ayala RM, Martinez-Lopez J, Albizua E, Diez A, Gilsanz F (2009) Clinical significance of Gata-1, Gata-2, EKLF, and c-MPL expression in acute myeloid leukemia. Am J Hematol 84:79–86

    Article  PubMed  CAS  Google Scholar 

  • Cantor AB, Orkin SH (2005) Coregulation of GATA factors by the Friend of GATA (FOG) family of multitype zinc finger proteins. Semin Cell Dev Biol 16:117–128

    Article  PubMed  CAS  Google Scholar 

  • Chen QR, Song YK, Yu LR, Wei JS, Chung JY, Hewitt SM, Veenstra TD, Khan J (2010) Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. J Proteome Res 9:373–382

    Article  PubMed  CAS  Google Scholar 

  • El Wakil A, Francius C, Wolff A, Pleau-Varet J, Nardelli J (2006) The GATA2 transcription factor negatively regulates the proliferation of neuronal progenitors. Development 133:2155–2165

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Oberthuer A, Brors B, Kahlert Y, Skowron M, Voth H, Warnat P, Ernestus K, Hero B, Berthold F (2006) Differential expression of neuronal genes defines subtypes of disseminated neuroblastoma with favorable and unfavorable outcome. Clin Cancer Res 12:5118–5128

    Article  PubMed  CAS  Google Scholar 

  • Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18:1806–1811

    Article  PubMed  CAS  Google Scholar 

  • Hoene V, Fischer M, Ivanova A, Wallach T, Berthold F, Dame C (2009) GATA factors in human neuroblastoma: distinctive expression patterns in clinical subtypes. Br J Cancer 101:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Holmes M, Turner J, Fox A, Chisholm O, Crossley M, Chong B (1999) hFOG-2, a novel zinc finger protein, binds the co-repressor mCtBP2 and modulates GATA-mediated activation. J Biol Chem 274:23491–23498

    Article  PubMed  CAS  Google Scholar 

  • Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN (2009) Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 139:1096–1108

    Article  PubMed  CAS  Google Scholar 

  • Kamnasaran D, Guha A (2005) Expression of GATA6 in the human and mouse central nervous system. Brain Res Dev Brain Res 160:90–95

    Article  PubMed  CAS  Google Scholar 

  • Kamnasaran D, Qian B, Hawkins C, Stanford WL, Guha A (2007) GATA6 is an astrocytoma tumor suppressor gene identified by gene trapping of mouse glioma model. Proc Natl Acad Sci USA 104:8053–8058

    Article  PubMed  CAS  Google Scholar 

  • Kaneko M, Yang W, Matsumoto Y, Watt F, Funa K (2006) Activity of a novel PDGF beta-receptor enhancer during the cell cycle and upon differentiation of neuroblastoma. Exp Cell Res 312:2028–2039

    Article  PubMed  CAS  Google Scholar 

  • Kiiveri S, Siltanen S, Rahman N, Bielinska M, Lehto VP, Huhtaniemi IT, Muglia LJ, Wilson DB, Heikinheimo M (1999) Reciprocal changes in the expression of transcription factors GATA-4 and GATA-6 accompany adrenocortical tumorigenesis in mice and humans. Mol Med 5:490–501

    PubMed  CAS  Google Scholar 

  • Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z (2008) GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13:141–152

    Article  PubMed  CAS  Google Scholar 

  • Kyrönlahti A, Rämö M, Tamminen M, Unkila-Kallio L, Butzow R, Leminen A, Nemer M, Rahman N, Huhtaniemi I, Heikinheimo M, Anttonen M (2008) GATA-4 regulates Bcl-2 expression in ovarian granulosa cell tumors. Endocrinology 149:5635–5642

    Article  PubMed  Google Scholar 

  • Laitinen MP, Anttonen M, Ketola I, Wilson DB, Ritvos O, Butzow R, Heikinheimo M (2000) Transcription factors GATA-4 and GATA-6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab 85:3476–3483

    Article  PubMed  CAS  Google Scholar 

  • Lawson MA, Mellon PL (1998) Expression of GATA-4 in migrating gonadotropin-releasing neurons of the developing mouse. Mol Cell Endocrinol 140:157–161

    Article  PubMed  CAS  Google Scholar 

  • Manuylov NL, Smagulova FO, Tevosian SG (2007) Fog2 excision in mice leads to premature mammary gland involution and reduced Esr1 gene expression. Oncogene 26:5204–5213

    Article  PubMed  CAS  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  • Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M (2005) Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells 10:693–704

    Article  PubMed  CAS  Google Scholar 

  • Molenaar JJ, Ebus ME, Koster J, Santo E, Geerts D, Versteeg R, Caron HN (2010) Cyclin D1 is a direct transcriptional target of GATA3 in neuroblastoma tumor cells. Oncogene 29:2739–2745

    Article  PubMed  CAS  Google Scholar 

  • Nemer G, Nemer M (2003) Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev Biol 254:131–148

    Article  PubMed  CAS  Google Scholar 

  • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, Ernestus K, Konig R, Haas S, Eils R, Schwab M, Brors B, Westermann F, Fischer M (2006) Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24:5070–5078

    Article  PubMed  CAS  Google Scholar 

  • Ohira M, Morohashi A, Inuzuka H, Shishikura T, Kawamoto T, Kageyama H, Nakamura Y, Isogai E, Takayasu H, Sakiyama S, Suzuki Y, Sugano S, Goto T, Sato S, Nakagawara A (2003) Expression profiling and characterization of 4200 genes cloned from primary neuroblastomas: identification of 305 genes differentially expressed between favorable and unfavorable subsets. Oncogene 22:5525–5536

    Article  PubMed  CAS  Google Scholar 

  • Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A, Hirata T, Kubo H, Goto T, Yamada S, Yoshida Y, Fuchioka M, Ishii S, Nakagawara A (2005) Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7:337–350

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi PP, Roth ME, Karis A, Leonard MW, Dzierzak E, Grosveld FG, Engel JD, Lindenbaum MH (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet 11:40–44

    Article  PubMed  CAS  Google Scholar 

  • Spitzenberg V, König C, Ulm S, Marone R, Röpke L, Müller JP, Grün M, Bauer R, Rubio I, Wymann MP, Voigt A, Wetzker R (2010) Targeting PI3K in neuroblastoma. J Cancer Res Clin Oncol 136:1881–1890

    Google Scholar 

  • Tsarovina K, Pattyn A, Stubbusch J, Müller F, van der Wees J, Schneider C, Brunet JF, Rohrer H (2004) Essential role of Gata transcription factors in sympathetic neuron development. Development 131:4775–4786

    Article  PubMed  CAS  Google Scholar 

  • Usary J, Llaca V, Karaca G, Presswala S, Karaca M, He X, Langerod A, Karesen R, Oh DS, Dressler LG, Lonning PE, Strausberg RL, Chanock S, Borresen-Dale AL, Perou CM (2004) Mutation of GATA3 in human breast tumors. Oncogene 23:7669–7678

    Article  PubMed  CAS  Google Scholar 

  • van Hamburg JP, de Bruijn MJ, Dingjan GM, Beverloo HB, Diepstraten H, Ling KW, Hendriks RW (2008) Cooperation of Gata3, c-Myc and Notch in malignant transformation of double positive thymocytes. Mol Immunol 45:3085–3095

    Article  PubMed  Google Scholar 

  • Wallach I, Zhang J, Hartmann A, van Landeghem FKH, Ivanova A, Klar M, Dame C (2009) Erythropoietin-Receptor gene regulation in neuronal cells. Pediatr Res 65:619–624

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392

    Article  PubMed  Google Scholar 

  • Wilzen A, Nilsson S, Sjoberg RM, Kogner P, Martinsson T, Abel F (2009) The Phox2 pathway is differentially expressed in neuroblastoma tumors, but no mutations were found in the candidate tumor suppressor gene PHOX2A. Int J Oncol 34:697–705

    PubMed  CAS  Google Scholar 

  • Yan W, Cao QJ, Arenas RB, Bentley B, Shao R (2010) GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem 285:14042–14051

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Gu L, Romeo PH, Bories D, Motohashi H, Yamamoto M, Engel JD (1994) Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 14:2201–2212

    PubMed  CAS  Google Scholar 

  • Zhou Y, Yamamoto M, Engel JD (2000) GATA2 is required for the generation of V2 interneurons. Development 127:3829–3838

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank PD Dr. Matthias Fischer (Department of Pediatric Oncology and Hematology and Center for Molecular Medicine Cologne (CMMC), University of Cologne) for the discussion on the biology of GATA transcription factors in neuroblastoma. Our experimental work on GATA transcription factors in neuroblastoma has been supported by grants from the Fritz-Thyssen-Stiftung, the Berliner Krebsgesellschaft e.V. and the Verein für Frühgeborene Kinder an der Charité e.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Dame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hoene, V., Dame, C. (2012). Neuroblastoma: Role of GATA Transcription Factors. In: Hayat, M. (eds) Neuroblastoma. Pediatric Cancer, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2418-1_14

Download citation

Publish with us

Policies and ethics