Skip to main content

Neuroblastoma: Role of Hypoxia and Hypoxia Inducible Factors in Tumor Progression

  • Chapter
  • First Online:
Neuroblastoma

Part of the book series: Pediatric Cancer ((PECA,volume 1))

  • 1789 Accesses

Abstract

Solid tumors are poorly oxygenated due to insufficient blood supply. Despite that the majority of cells in solid tumor are hypoxic, they both survive and grow under hypoxic conditions. Thus, tumor cells have the ability to adapt to hypoxia, which highly affects the phenotype as well as behavior of distinct cells and the tumor as a whole. Instrumental in this adaptation process, which also occurs in non-transformed cells, are the hypoxia inducible transcription factors HIF-1 and HIF-2 and their oxygen sensitive alpha subunits. In neuroblastoma, a tumor derived from sympathetic nervous system precursor cells, HIF signaling is particularly important as HIF-2α is a marker of unfavorable disease and as it turns out, also of immature neural crest-like, neuroblastoma cells, which is in line with the temporal embryonal expression of HIF-2α during discrete periods of sympathetic nervous system development. Here we review the general mechanisms by which tumor cells adapt to hypoxia and in particular, the role of HIF-2α in aggressive neuroblastoma disease, which primarily is not linked to hypoxic stabilization of HIF-2α, but rather appears to be an inherent property of immature neuroblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beckwith JB, Perrin EV (1963) In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am J Pathol 43:1089–1104

    PubMed  CAS  Google Scholar 

  • Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ (2005) Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factorexpression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res 65:4775–4781

    Article  PubMed  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  • Chan DA, Giaccia AJ (2010) PHD2 in tumour angiogenesis. Br J Cancer 103:1–5

    Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570

    Article  PubMed  CAS  Google Scholar 

  • Dimova EY, Kietzmann T (2010) Hypoxia-inducible factors: post-translational crosstalk of signaling pathways. Methods Mol Biol 647:215–236

    Google Scholar 

  • Favier J, Lapointe S, Maliba R, Sirois MG (2007) HIF2 alpha reduces growth rate but promotes angiogenesis in a mouse model of neuroblastoma. BMC Cancer 7:139

    Article  PubMed  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  • Fredlund E, Ringner M, Maris JM, Påhlman S (2008) High Myc pathway activity and low stage of neuronal differentiation associate with poor outcome in neuroblastoma. Proc Natl Acad Sci USA 105:14094–14099

    Article  PubMed  CAS  Google Scholar 

  • Hambardzumyan D, Becher OJ, Rosenblum MK, Pandolfi PP, Manova-Todorova K, Holland EC (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22:436–448

    Article  PubMed  CAS  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    Article  PubMed  CAS  Google Scholar 

  • Helczynska K, Larsson AM, Holmquist Mengelbier L, Bridges E, Fredlund E, Borgquist S, Landberg G, Påhlman S, Jirström K (2008) Hypoxia-inducible factor-2alpha correlates to distant recurrence and poor outcome in invasive breast cancer. Cancer Res 68:9212–9220

    Article  PubMed  CAS  Google Scholar 

  • Holmquist-Mengelbier L, Fredlund E, Löfstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, Poellinger L, Påhlman S (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10:413–423

    Article  PubMed  CAS  Google Scholar 

  • Jögi A, Øra I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H, Påhlman S (2002) Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci USA 99:7021–7026

    Article  PubMed  Google Scholar 

  • Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    Article  PubMed  CAS  Google Scholar 

  • Kvietikova I, Wenger RH, Marti HH, Gassmann M (1995) The transcription factors ATF-1 and CREB-1 bind constitutively to the hypoxia-inducible factor-1 (HIF-1) DNA recognition site. Nucleic Acids Res 23:4542–4550

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513

    Article  PubMed  CAS  Google Scholar 

  • Löfstedt T, Fredlund E, Holmquist-Mengelbier L, Pietras A, Ovenberger M, Poellinger L, Påhlman S (2007) Hypoxia inducible factor-2alpha in cancer. Cell Cycle 6:919–926

    Article  PubMed  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  • Martens LK, Kirschner KM, Warnecke C, Scholz H (2007) Hypoxia-inducible factor-1 (HIF-1) is a transcriptional activator of the TrkB neurotrophin receptor gene. J Biol Chem 282:14379–14388

    Article  PubMed  CAS  Google Scholar 

  • Martin CM, Ferdous A, Gallardo T, Humphries C, Sadek H, Caprioli A, Garcia JA, Szweda LI, Garry MG, Garry DJ (2008) Hypoxia-inducible factor-2alpha transactivates abcg2 and promotes cytoprotection in cardiac side population cells. Circ Res 102:1075–1081

    Article  PubMed  CAS  Google Scholar 

  • Nilsson MB, Zage PE, Zeng L, Xu L, Cascone T, Wu HK, Saigal B, Zweidler-McKay PA, Heymach JV (2010) Multiple receptor tyrosine kinases regulate HIF-1alpha and HIF-2alpha in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors. Oncogene 29:2938–2949

    Google Scholar 

  • Noguera R, Fredlund E, Piqueras M, Pietras A, Beckman S, Navarro S, Påhlman S (2009) HIF-1alpha and HIF-2alpha are differentially regulated in vivo in neuroblastoma: high HIF-1alpha correlates negatively to advanced clinical stage and tumor vascularization. Clin Cancer Res 15:7130–7136

    Article  PubMed  CAS  Google Scholar 

  • Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, Ernestus K, Konig R, Haas S, Eils R, Schwab M, Brors B, Westermann F, Fischer M (2006) Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24:5070–5078

    Article  PubMed  CAS  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    Article  PubMed  CAS  Google Scholar 

  • Pietras A, Gisselsson D, Øra I, Noguera R, Beckman S, Navarro S, Påhlman S (2008) High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol 214:482–488

    Article  PubMed  CAS  Google Scholar 

  • Pietras A, Johnsson AS, Påhlman S (2010) The HIF-2alpha-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr Top Microbiol Immunol 345:1–20

    Article  PubMed  CAS  Google Scholar 

  • Puppo M, Battaglia F, Ottaviano C, Delfino S, Ribatti D, Varesio L, Bosco MC (2008) Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. Mol Cancer Ther 7:1974–1984

    Article  PubMed  CAS  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL, Pugh CW, Maxwell PH, Harris AL, Ratcliffe PJ (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von hippel-lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Google Scholar 

  • Straub JA, Sholler GL, Nishi R (2007) Embryonic sympathoblasts transiently express TrkB in vivo and proliferate in response to brain-derived neurotrophic factor in vitro. BMC Dev Biol 7:10

    Article  PubMed  Google Scholar 

  • Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    Article  PubMed  CAS  Google Scholar 

  • Tsarovina K, Schellenberger J, Schneider C, Rohrer H (2008) Progenitor cell maintenance and neurogenesis in sympathetic ganglia involves notch signaling. Mol Cell Neurosci 37:20–31

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Hoeckel M (1999) Predictive power of the tumor oxygenation status. Adv Exp Med Biol 471:533–539

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Cancer Society, the Children’s Cancer Foundation of Sweden, the Swedish Research Council, the SSF Strategic Center for Translational Cancer Research – CREATE Health, BioCARE, a Strategic Research Program at Lund University, Gunnar Nilsson’s Cancer Foundation and the research funds of Malmö University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Påhlman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fredlund, E., Pietras, A., Jögi, A., Påhlman, S. (2012). Neuroblastoma: Role of Hypoxia and Hypoxia Inducible Factors in Tumor Progression. In: Hayat, M. (eds) Neuroblastoma. Pediatric Cancer, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2418-1_13

Download citation

Publish with us

Policies and ethics