Skip to main content

Neuroblastoma: Antibody-Based Immunotherapy

  • Chapter
  • First Online:
Neuroblastoma

Part of the book series: Pediatric Cancer ((PECA,volume 1))

  • 1769 Accesses

Abstract

Neuroblastoma is a cancer of the sympathetic nervous system. This is a solid malignant tumour which resides as an accumulation in the abdomen or around the spinal cord in the neck, chest, or pelvis. Chemotherapy and radiation are standard treatments for the neuroblastoma patients, however relapses are common and more difficult to treat, making neuroblastoma one of the most lethal of all childhood cancers. Furthermore, the application of these therapies is restricted by dose-limiting toxicities and little tumour specificity. Recently, there has been an increase in interest in the use of biological immune-based therapies for patients with malignancies, including neuroblastoma. This has been determined by a deeper understanding of the crosstalk between the host immune system and malignant tumours, as well as a number of potential advantages of immunotherapy – high specificity and less toxicity than standard approaches. The particular emphasis of this article is on the advantages and current drawbacks of antibody-based immunotherapy for neuroblastoma. This review discusses the issues with a view to inspiring the development of new agents that could be useful for the treatment of neuroblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bartolotti S, Peters D (1978) Delayed removal of renal-bound antigen in decomplemented rabbits with acute serum sickness. Clin Exp Immunol 32:199–206

    PubMed  CAS  Google Scholar 

  • Brennan P, Donev R, Hewamana S (2008) Targeting transcription factors for therapeutic benefit. Mol Biosyst 4:909–919

    Article  PubMed  CAS  Google Scholar 

  • Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    PubMed  CAS  Google Scholar 

  • Buettner R, Huang M, Gritsko T, Karras J, Enkemann S, Mesa T, Nam S, Yu H, Jove R (2007) Activated signal transducers and activators of transcription 3 signaling induces CD46 expression and protects human cancer cells from complement-dependent cytotoxicity. Mol Cancer Res 5:823–832

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Caragine T, Cheung N, Tomlinson S (2000a) Surface antigen expression and complement susceptibility of differentiated neuroblastoma clones. Am J Pathol 156:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Chen SH, Caragine T, Cheung NKV, Tomlinson S (2000b) CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma. Cancer Res 60:3013–3018

    PubMed  CAS  Google Scholar 

  • Di Gaetano N, Xiao Y, Erba E, Bassan R, Rambaldi A, Golay J, Introna M (2001) Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol 114:800–809

    Article  PubMed  Google Scholar 

  • Donev RM, Cole DS, Sivasankar B, Hughes TR, Morgan BP (2006) p53 regulates cellular resistance to complement lysis through enhanced expression of CD59. Cancer Res 66:2451–2458

    Article  PubMed  CAS  Google Scholar 

  • Donev R, Gray L, Sivasankar B, Hughes T, van den Berg C, Morgan BP (2008) Modulation of CD59 expression by restrictive silencer factor-derived peptides in cancer immunotherapy for neuroblastoma. Cancer Res 68:5979–5987

    Article  PubMed  CAS  Google Scholar 

  • Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40:109–123

    Article  PubMed  CAS  Google Scholar 

  • Gelderman KA, Lam S, Sier CF, Gorter A (2006) Cross-linking tumor cells with effector cells via CD55 with a bispecific mAb induces beta-glucan-dependent CR3-dependent cellular cytotoxicity. Eur J Immunol 36:977–984

    Article  PubMed  CAS  Google Scholar 

  • Gillies S, Reilly E, Lo K, Reisfeld R (1992) Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci USA 89:1428–1432

    Article  PubMed  CAS  Google Scholar 

  • Handgretinger R, Anderson K, Lang P, Dopfer R, Klingebiel T, Schrappe M, Reuland P, Gillies S, Reisfeld R, Neithammer D (1995) A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch14.18 in patients with neuroblastoma. Eur J Cancer 31A:261–267

    Article  PubMed  CAS  Google Scholar 

  • Harris C, Kan K, Stevenson G, Morgan BP (1997) Tumour cell killing using chemically engineered antibody constructs specific for tumour cells and the complement inhibitor CD59. Clin Exp Immunol 107:364–371

    Article  PubMed  CAS  Google Scholar 

  • Holla VR, Wang D, Brown JR, Mann JR, Katkuri S, DuBois RN (2005) Prostaglandin E2 regulates the complement inhibitor CD55/decay-accelerating factor in colorectal cancer. J Biol Chem 280:476–483

    PubMed  CAS  Google Scholar 

  • Lalli PN, Strainic MG, Lin F, Medof ME, Heeger PS (2007) Decay accelerating factor can control T cell differentiation into IFN-γ-producing effector cells via regulating local C5a-induced IL-12 production. J Immunol 179:5793–5802

    PubMed  CAS  Google Scholar 

  • Liu J, Miwa T, Hilliard B, Chen Y, Lambris J, Wells A, Song W (2005) The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J Exp Med 201:567–577

    Article  PubMed  CAS  Google Scholar 

  • Lode H, Xiang R, Dreier T, Varki N, Gillies S, Reisfeld R (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706–1715

    PubMed  CAS  Google Scholar 

  • Lublin DM, Atkinson JP (1989) Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol 7:35–58

    Article  PubMed  CAS  Google Scholar 

  • Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R, Amadori A, Tedesco F (2007) In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res 67:10556–10563

    Article  PubMed  CAS  Google Scholar 

  • Mason JC, Steinberg R, Lidington EA, Kinderlerer AR, Ohba M, Haskard DO (2004) Decay-accelerating factor induction on vascular endothelium by vascular endothelial growth factor (VEGF) is mediated via a VEGF receptor-2 (VEGF-R2) and protein kinase C-alpha/epsilon (PKCalpha/epsilon)-dependent cytoprotective signaling pathway and is inhibited by cyclosporin A. J Biol Chem 279:41611–41618

    Article  PubMed  CAS  Google Scholar 

  • Mujoo K, Cheresh D, Yang H, Reisfeld R (1987) Disialoganglioside GD2 on human neuroblastoma cells: target antigen for monoclonal antibody-mediated cytolysis and suppression of tumor growth. Cancer Res 47:1098–1104

    PubMed  CAS  Google Scholar 

  • Mulé J, Yang J, Afreniere R, Shu S, Rosenberg S (1987) Identification of cellular mechanisms operational in vivo during the regression of established pulmonary metastases by the systemic administration of high-dose recombinant interleukin 2. J Immunol 139:285–294

    PubMed  Google Scholar 

  • Munn D, Cheung N (1987) Interleukin-2 enhancement of monoclonal antibody-mediated cellular cytotoxicity against human melanoma. Cancer Res 47:6600–6605

    PubMed  CAS  Google Scholar 

  • Ohta S, Igarashi S, Honda A, Sato S, Hanai N (1993) Cytotoxicity of adriamycin-containing immunoliposomes targeted with anti-ganglioside monoclonal antibodies. Anticancer Res 13:331–336

    PubMed  CAS  Google Scholar 

  • Sondel P, Hank J, Gan J, Neal Z, Albertini M (2003) Preclinical and clinical development of immunocytokines. Curr Opin Investig Drugs 4:696–700

    PubMed  CAS  Google Scholar 

  • Spiller OB, Criado-Garcia O, Rodriguez De Cordoba S, Morgan BP (2000) Cytokine-mediated up-regulation of CD55 and CD59 protects human hepatoma cells from complement attack. Clin Exp Immunol 121:234–241

    Article  PubMed  CAS  Google Scholar 

  • Spix C, Aareleid T, Stiller C, Magnani C, Kaatsch P, Michaelis J (2001) Survival of children with neuroblastoma: time trends and regional differences in Europe, 1978–1992. Eur J Cancer 37:722–729

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L, Boström K, Fredman P, Jungbjer B, Lekman A, Månsson J, Rynmark B (1994) Gangliosides and allied glycosphingolipids in human peripheral nerve and spinal cord. Biochim Biophys Acta 1214:115–123

    PubMed  CAS  Google Scholar 

  • Thomas P, Delatte S, Sutphin A, Frankel A, Tagge E (2002) Effective targeted cytotoxicity of neuroblastoma cells. J Pediatr Surg 37:539–544

    Article  PubMed  Google Scholar 

  • Varela J, Imai M, Atkinson C, Ohta R, Rapisardo M, Tomlinson S (2008) Modulation of protective T cell immunity by complement inhibitor expression on tumor cells. Cancer Res 68:6734–6742

    Article  PubMed  CAS  Google Scholar 

  • Walport MJ (2001) Advances in immunology: complement (First of two parts). N Engl J Med 344:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Yeh S, Larson S, Burch L, Kushner B, Laquaglia M, Finn R, Cheung N (1991) Radioimmunodetection of neuroblastoma with iodine-131-3F8: correlation with biopsy, iodine-131-metaiodobenzylguanidine and standard diagnostic modalities. J Nucl Med 32:769–776

    PubMed  CAS  Google Scholar 

  • Yu H, Jove R (2004) The STATs of cancer-new molecular targets come of age. Nat Rev Cancer 4:97–105

    Article  PubMed  CAS  Google Scholar 

  • Zell S, Geis N, Rutz R, Schultz S, Giese T, Kirschfink M (2007) Down-regulation of CD55 and CD46 expression by anti-sense phosphorothioate oligonucleotides (S-ODNs) sensitizes tumour cells to complement attack. Clin Exp Immunol 150:576–584

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossen M. Donev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Donev, R.M., Hughes, T.R., Morgan, B.P. (2012). Neuroblastoma: Antibody-Based Immunotherapy. In: Hayat, M. (eds) Neuroblastoma. Pediatric Cancer, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2418-1_10

Download citation

Publish with us

Policies and ethics