Skip to main content

Value of OLEDs with Field-Effect Electron Transport for Lasing Applications

  • Chapter
Device Architecture and Materials for Organic Light-Emitting Devices
  • 1110 Accesses

Abstract

The aim of Chapter 7 is to investigate the prospects of realizing an electrically pumped laser using OLEDs with field-effect electron transport. First, the potential of the structure as laser device configuration is analyzed. The advantages as well as the existing limitations are highlighted. Next, amplified spontaneous emission measurements and optically pumped lasing experiments are performed. Stimulated emission in the host-guest system Alq3:DCM2 and in organic layer stacks including hole- and electron-transporting layers used in OLEDs with field-effect assisted electron transport are studied. In the end, the different possibilities to incorporate an optical feedback mechanism in the device are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CAvity Modelling FRamework (developed at INTEC, Ghent University, Belgium).

  2. 2.

    Tantalum pentoxide.

References

  1. M.A. Baldo, D.F. O’Brien, M.E. Thompson, S.R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60(20), 14422–14428 (1999)

    Article  ADS  Google Scholar 

  2. C.W. Tang, S.A. VanSlyke, C.H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 65(9), 3610–3616 (1989)

    Article  ADS  Google Scholar 

  3. F. Dinelli, M. Mugia, P. Levy, M. Cavallini, F. Biscarini, Spatially correlated charge transport in organic thin film transistors. Phys. Rev. Lett. 92(11), 116802 (2004)

    Article  ADS  Google Scholar 

  4. M. Muccini, A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006)

    Article  ADS  Google Scholar 

  5. E.B. Namdas, P. Ledochowitsch, J.D. Yuen, D. Moses, A.J. Heeger, High performance light emitting transistors. Appl. Phys. Lett. 92, 183304 (2008)

    Article  ADS  Google Scholar 

  6. J. Zaumseil, R. Friend, H. Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 5(1), 69–74 (2006)

    Article  ADS  Google Scholar 

  7. R.C.G. Naber, M. Bird, H. Sirringhaus, A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors. Appl. Phys. Lett. 93, 023301 (2008)

    Article  ADS  Google Scholar 

  8. T. Takenobu, S.Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100, 066601 (2008)

    Article  ADS  Google Scholar 

  9. N. Tessler, Laser based on semiconducting organic materials. Adv. Mater. 11(5), 363–370 (1999)

    Article  Google Scholar 

  10. V.G. Kozlov, V. Bulovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G. Parthasarathy, S.R. Forrest, Study of lasing action based on förster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys. 84(8), 4096–4108 (1998)

    Article  ADS  Google Scholar 

  11. M. Berggren, A. Dodabalapur, R.E. Slusher, Stimulated emission and lasing in dye-doped organic thin films with förster transfer. Appl. Phys. Lett. 71, 2230 (1997)

    Article  ADS  Google Scholar 

  12. C. Karnutsch, C. Gärtner, V. Haug, U. Lemmer, T. Farrell, B.S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J.C. deMello, D.D.C. Bradley, Low threshold blue conjugated polymer lasers with first-and second-order distributed feedback. Appl. Phys. Lett. 89, 201108 (2006)

    Article  ADS  Google Scholar 

  13. G. Wegmann, B. Schweitzer, D. Hertel, H. Giessen, M. Oestreich, U. Scherf, K. Mullen, R.F. Mahrt, The dynamics of gain-narrowing in a ladder-type π-conjugated polymer. Chem. Phys. Lett. 312, 376–384 (1999)

    Article  ADS  Google Scholar 

  14. M. Reufer, S. Riechel, J.M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, V. Wittwer, U. Scherf, Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 84(17), 3262–3264 (2004)

    Article  ADS  Google Scholar 

  15. V.G. Kozlov, G. Parthasarathy, P.E. Burrows, V.B. Khalfin, J. Wang, S.Y. Chou, S.R. Forrest, Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quantum Electron. 36(1), 18–26 (2000)

    Article  ADS  Google Scholar 

  16. C. Gärtner, C. Karnutsch, U. Lemmer, C. Pflumm, The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007)

    Article  ADS  Google Scholar 

  17. E.B. Namdas, T. Minghong, P. Ledochowitsch, S.R. Mednick, J.D. Yuen, D. Moses, A.J. Heeger, Low thresholds in polymer lasers on conductive substrates by distributed feedback nanoimprinting: progress towards electrically pumped plastic lasers. Adv. Mater. 20, 1–4 (2008)

    Article  Google Scholar 

  18. M.C. Gwinner, S. Khodabakhsh, M.H. Song, H. Schweizer, H. Giessen, H. Sirringhaus, Integration of a rib waveguide distributed feedback structure into a light-emitting polymer field-effect transistor. Adv. Funct. Mater. 19(9), 1360–1370 (2009)

    Article  Google Scholar 

  19. S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, High mobility n-type thin-film transistors based on N,N’-ditridecyl perylene diimide with thermal treatments. Appl. Phys. Lett. 89, 112108 (2006)

    Article  ADS  Google Scholar 

  20. M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 403, 750–753 (2000)

    Article  ADS  Google Scholar 

  21. J. Nagle, S. Hersee, M. Krakowski, T. Weil, C. Weisbuch, Threshold current of single quantum well lasers: the role of the confining layers. Appl. Phys. Lett. 49(20), 1325–1327 (1986)

    Article  ADS  Google Scholar 

  22. P.L. Derry, A. Yariv, K.Y. Lau, N. Bar-Chaim, K. Lee, J. Rosenberg, Ultralow-threshold graded-index separate-confinement single quantum well buried heterostructure (Al,Ga)As lasers with high reflectivity coatings. Appl. Phys. Lett. 50(25), 1773–1775 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Schols .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schols, S. (2011). Value of OLEDs with Field-Effect Electron Transport for Lasing Applications. In: Device Architecture and Materials for Organic Light-Emitting Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1608-7_7

Download citation

Publish with us

Policies and ethics