Skip to main content
  • 1149 Accesses

Abstract

In ChapterĀ 3, a novel two-electrode light-emitting device structure is proposed. The device is a hybrid structure between a diode and a field-effect transistor. Compared to conventional OLEDs, the cathode is displaced one to several micrometers from the light-emission zone. As the light emission zone is not covered by metal, the device can be used for top emission or even as waveguide. The micrometer-sized distance between the cathode and the active region can be bridged by electrons with an enhanced field-effect mobility. Owing to this high charge carrier mobility, large current densities are possible. The external quantum efficiency at these high current densities is as high as that of conventional OLEDs using the same materials. In contrast to organic light-emitting field-effect transistors, only two electrodes are used. Moreover, lightemission in the novel device structure always occurs at a fixed position, irrespective of the applied bias, in contrast to LEOFETs where the emission zone can move within the channel by varying the bias conditions. The first section of this chapter describes the technology and the materials used to fabricate the device. Next, the device operation and the device performance are discussed. The electrical characteristics as well as the opto-electronic performance are studied. Suggestions for further improvement of the device performance are given in the last section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.W.M. Blom, M.J.M. de Jong, Electrical characterization of polymer light-emitting diodes. IEEE J. Sel. Top. Quantum Electron. 4(1), 105ā€“112 (1998)

    ArticleĀ  Google ScholarĀ 

  2. C. Hosokawa, H. Tokailin, H. Higashi, T. Kusumoto, Transient behavior of organic thin film electroluminescence. Appl. Phys. Lett. 60(10), 1220ā€“1222 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. J. Kido, Y. Lizumi, Fabrication of highly efficient organic electroluminiscent devices. Appl. Phys. Lett. 73(19), 2721ā€“2723 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90(10), 5048ā€“5051 (2001)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. C.W. Tang, S.A. VanSlyke, C.H. Chen, Electroluminescence of doped organic thin films. J.Ā Appl. Phys. 65(9), 3610ā€“3616 (1989)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  6. C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, C. Adachi, Lateral organic light-emitting diode with field-effect transistor characteristics. J.Ā Appl. Phys. 98, 074506 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. E.B. Namdas, P. Ledochowitsch, J.D. Yuen, D. Moses, A.J. Heeger, High performance light emitting transistors. Appl. Phys. Lett. 92, 183304 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. J. Zaumseil, R. Friend, H. Sirringhaus, Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 5(1), 69ā€“74 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. J.S. Swensen, C. Soci, A.J. Heeger, Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. J. Zaumseil, C.L. Donley, J. Kim, R.H. Friend, H. Sirringhaus, Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 18, 2708ā€“2712 (2006)

    ArticleĀ  Google ScholarĀ 

  12. R.C.G. Naber, M. Bird, H. Sirringhaus, A gate dielectric that enables high ambipolar mobilities in polymer light-emitting field-effect transistors. Appl. Phys. Lett. 93, 023301 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. T. Takenobu, S.Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, Y. Iwasa, High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100, 066601 (2008)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. N. Tessler, Laser based on semiconducting organic materials. Adv. Mater. 11(5), 363ā€“370 (1999)

    ArticleĀ  Google ScholarĀ 

  15. V.G. Kozlov, V. Bulovic, P.E. Burrows, M. Baldo, V.B. Khalfin, G. Parthasarathy, S.R. Forrest, Study of lasing action based on fƶrster energy transfer in optically pumped organic semiconductor thin films. J. Appl. Phys. 84(8), 4096ā€“4108 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  16. M. Reufer, S. Riechel, J.M. Lupton, J. Feldmann, U. Lemmer, D. Schneider, T. Benstem, T. Dobbertin, W. Kowalsky, A. Gombert, K. Forberich, V. Wittwer, U. Scherf, Low-threshold polymeric distributed feedback lasers with metallic contacts. Appl. Phys. Lett. 84(17), 3262ā€“3264 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. V.G. Kozlov, G. Parthasarathy, P.E. Burrows, V.B. Khalfin, J. Wang, S.Y. Chou, S.R. Forrest, Structures for organic diode lasers and optical properties of organic semiconductors under intense optical and electrical excitations. IEEE J. Quantum Electron. 36(1), 18ā€“26 (2000)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. C. GƤrtner, C. Karnutsch, U. Lemmer, C. Pflumm, The influence of annihilation processes on the threshold current density of organic laser diodes. J. Appl. Phys. 101, 023107 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. H. Yamamoto, T. Oyamada, H. Sasabe, C. Adachi, Amplified spontaneous emission under optical pumping from an organic semiconductor laser structure equipped with transparent carrier injection electrodes. Appl. Phys. Lett. 84(8), 1401ā€“1403 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. P. Gƶrrn, T. Rabe, T. Riedl, W. Kowalsky, F. Galbrecht, U. Scherf, Low loss contacts for organic semiconductor lasers. Appl. Phys. Lett. 89, 161113 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. P. Gƶrrn, T. Riedl, W. Kowalsky, Loss reduction in fully contacted organic laser waveguides using TE2 modes. Appl. Phys. Lett. 91, 041113 (2007)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  22. Y. Hamada, H. Kanno, T. Tsuyoshi, H. Takahashi, Red organic light-emitting diodes using an emitting assist dopant. Appl. Phys. Lett. 75(12), 1682ā€“1684 (1999)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. C. Rost, D.J. Gundlach, S. Karg, W. Riess, Ambipolar organic field-effect transistor based on an organic heterostructure. J. Appl. Phys. 95(10), 5782ā€“5787 (2004)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. I.D. Parker, Carrier tunneling and device characteristics in polymer light-emitting diodes. J.Ā Appl. Phys. 75(3), 1656ā€“1666 (1994)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  25. D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, D.G. Schlom, Pentacene organic thin-film transistorsā€”molecular ordering and mobility. IEEE Electron Device Lett. 18, 87 (1997)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  26. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 40, 685ā€“688 (1999)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. I.D.W. Samuel, G. Rumbles, C.J. Collison, R.H. Friend, S.C. Moratti, A.B. Holmes, Picosecond time-resolved photoluminescence of ppv derivatives. Synth. Met. 84, 497ā€“500 (1997)

    ArticleĀ  Google ScholarĀ 

  28. M. Muratsubaki, Y. Furukawa, T. Noguchi, T. Ohnishi, E. Fujiwara, H. Tada, Field-effect transistors based on poly(p-phenylenevinylene) derivatives. Chem. Lett. 33(11), 1480ā€“1481 (2004)

    ArticleĀ  Google ScholarĀ 

  29. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Electroluminescence in organic films with three-layer structure. Jpn. J. Appl. Phys. 27(2), L269ā€“L271 (1988)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  30. S. Schols, S. Verlaak, C. Rolin, D. Cheyns, J. Genoe, P. Heremans, An organic light-emitting diode with field-effect electron transport. Adv. Funct. Mater. 18, 136ā€“144 (2008)

    ArticleĀ  Google ScholarĀ 

  31. S. Schols, C. McClatchey, C. Rolin, D. Bode, J. Genoe, P. Heremans, A. Facchetti, Organic light-emitting diodes with field-effect-assisted electron transport based on Ī±,Ļ‰-diperfluorohexyl-quaterthiophene. Adv. Funct. Mater. 18, 3645ā€“3652 (2008)

    ArticleĀ  Google ScholarĀ 

  32. S.D. Vusser, S. Stoedel, K. Myny, D. Janssen, S.D. Jonge, J. Genoe, P. Heremans, An integrated shadowmask technique for patterning small molecule organic semiconductors. Appl. Phys. Lett. 88, 103501 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. J. Veres, S. Ogier, S. Leeming, B. Brown, D. Cupertino, Air stable, amorphous organic films and their applications to solution processable flexible electronics. Mater. Res. Soc. Symp. Proc. 708, BB8.7.1 (2002)

    Google ScholarĀ 

  34. V. Bulovic, A. Shoustikov, M.A. Baldo, E. Bose, V.G. Kozlov, M.E. Thompson, S.R. Forrest, Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts. Chem. Phys. Lett. 287, 455ā€“460 (1998)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. D.J. Gundlach, K.P. Pernstich, G. Wilckens, M. GrĆ¼ter, S. Haas, B. Batlogg, High mobility n-channel organic thin-film transistors and complementary inverters. J. Appl. Phys. 98, 064502 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, High mobility n-type thin-film transistors based on N,Nā€™-ditridecyl perylene diimide with thermal treatments. Appl. Phys. Lett. 89, 112108 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  37. T. van Woudenbergh, P.W.M. Blom, J.N. Huiberts, Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact. Appl. Phys. Lett. 82(6), 985ā€“987 (2003)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith, T.D. Jones, High performance organic thin film transistors. Mater. Res. Soc. Symp. Proc. 771, L6.5.2 (2003)

    Google ScholarĀ 

  39. L.-L. Chua, J. Zaumseil, J.-F. Chang, E.C.-W. Ou, P.K.-H. Ho, H. Sirringhaus, R.H. Friend, General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194ā€“199 (2005)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. Lee, C. Adachi, P.E. Burrows, S.R. Forrest, M.E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization and use in organic light emitting diodes. J.Ā Am. Chem. Soc. 123(18), 4304ā€“4312 (2001)

    ArticleĀ  Google ScholarĀ 

  41. I. Sokolik, R. Priestley, A.D. Walser, R. Dorsinville, Bimolecular reactions of singlet excitons in tris(8-hydroxyquinoline) aluminum. Appl. Phys. Lett. 69(27), 4168ā€“4170 (1996)

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Schols .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schols, S. (2011). Organic Light-Emitting Diodes with Field-Effect Electron Transport. In: Device Architecture and Materials for Organic Light-Emitting Devices. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1608-7_3

Download citation

Publish with us

Policies and ethics