Skip to main content

Forests and Global Change

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 216))

Abstract

Forest ecosystems influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition (Bonan 2008). Physical processes at the intersection of the biosphere and geosphere, commonly referred to as biogeophysics, include momentum transfer and land–atmosphere energy fluxes (absorption and reflection of solar radiation, absorption and emission of longwave radiation, partitioning of net radiation into sensible and latent heat fluxes, and storage of heat in the soil). Hydrologic processes include interception of precipitation, throughfall, stemflow, infiltration, runoff, evapotranspiration, soil water dynamics, and snow melt. Forests additionally influence climate and atmospheric composition through biogeochemical processes including the exchanges of CO2, CH4, N2O, biogenic volatile organic compounds, and aerosols with the atmosphere. Forest ecosystems are now recognized as providing important climate forcing and feedback.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bala G, Caldeira K, Wickett M et al (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104:6550–6555

    Article  Google Scholar 

  • Bonan GB (1995) Land–atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model. J Geophys Res 100D:2817–2831

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Bonan GB, Levis S, Sitch S et al (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Change Biol 9:1543–1566

    Article  Google Scholar 

  • Bondeau A, Smith PC, Zaehle S et al (2007) Modeling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706

    Article  Google Scholar 

  • Brovkin V, Sitch S, von Bloh W et al (2004) Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Glob Change Biol 10:1253–1266

    Article  Google Scholar 

  • Brovkin V, Claussen M, Driesschaert E et al (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26:587–600

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C et al (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon–cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Craig SG, Holmén KJ, Bonan GB et al (1998) Atmospheric CO2 simulated by the National Center for Atmospheric Research Community Climate Model. 1. Mean fields and seasonal cycles. J Geophys Res 103D:13213–13235

    Article  Google Scholar 

  • de Graaff MA, van Groenigen KJ, Six J et al (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Glob Change Biol 12:2077–2091

    Article  Google Scholar 

  • Deardorff JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 83C:1889–1903

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A et al (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Denning AS, Randall DA, Collatz GJ et al (1996) Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: simulated CO2 concentrations. Tellus 48B:543–567

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modeling tropical deforestation: a study of GCM land–surface parameterizations. Q J R Meteorol Soc 114:439–462

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ et al (1986) Biosphere–Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech Note NCAR/TN–275+STR. Natl Cent Atmos Res, Boulder, CO

    Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model, NCAR Tech Note NCAR/TN–387+STR. Natl Cent Atmos Res, Boulder, CO

    Google Scholar 

  • Feddema JJ, Oleson KW, Bonan GB et al (2005) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N et al (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10:603–628

    Article  Google Scholar 

  • Foley JA, Levis S, Costa MH et al (2000) Incorporating dynamic vegetation cover within global climate models. Ecol Appl 10:1620–1632

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Gervois S, de Noblet–Ducoudré N, Viovy N et al (2004) Including croplands in a global biosphere model: methodology and evaluation at specific sites. Earth Interact 8:1–25

    Article  Google Scholar 

  • Juang JY, Katul G, Siqueira M et al (2007) Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys Res Lett. doi:10.1029/2007GL031296

    Google Scholar 

  • Klein Goldewijk K, Van Drecht G, Bouwman AF (2007) Mapping contemporary global cropland and grassland distributions on a 5 × 5 minute resolution. J Land Use Sci 2:167–190

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (1999) CO2, climate, and vegetation feedbacks at the Last Glacial Maximum. J Geophys Res 104D:31191–31198

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (2000) Large-scale vegetation feedbacks on a doubled CO2 climate. J Clim 13:1313–1325

    Article  Google Scholar 

  • Levis S, Bonan GB, Bonfils C (2004) Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model. Clim Dyn 23:791–802

    Article  Google Scholar 

  • Manabe S, Smagorinsky J, Strickler RF (1965) Simulated climatology of a general circulation model with a hydrologic cycle. Mon Weather Rev 93:769–798

    Article  Google Scholar 

  • Matthews HD, Weaver AJ, Meissner KJ et al (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479

    Article  Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW et al (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J Geophys Res. doi:10.1029/2008JG000812

    Google Scholar 

  • Melillo JM, Steudler PA, Aber JD et al (2002) Soil warming and carbon–cycle feedbacks to the climate system. Science 298:2173–2176

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S et al (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    Article  Google Scholar 

  • Oleson KW, Niu GY, Yang ZL et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res. doi:10.1029/2007JG000563

    Google Scholar 

  • Pastor J, Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334:55–58

    Article  Google Scholar 

  • Pitman AJ, de Noblet-Ducoudré N, Cruz FT et al (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett. doi:10.1029/2009GL039076

    Google Scholar 

  • Plattner GK, Knutti R, Joos F et al (2008) Long-term climate commitments projected with climate-carbon cycle models. J Clim 21:2721–2751

    Article  Google Scholar 

  • Pongratz J, Reick CH, Raddatz T et al (2010) Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophys Res Lett. doi:10.1029/2010GL043010

    Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C et al (2008) Farming the planet: 1 Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:19. doi:10.1029/2007GB002952

    Article  Google Scholar 

  • Randerson JT, Hoffman FM, Thornton PE et al (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models. Glob Change Biol 15:2462–2484

    Article  Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC et al (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ et al (1996a) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Sellers PJ, Bounoua L, Collatz GJ et al (1996b) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406

    Article  Google Scholar 

  • Shevliakova E, Pacala SW, Malyshev S et al (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob Biogeochem Cycles. doi:10.1029/2007GB003176

    Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land–surface evapotranspiration on the Earth’s climate. Science 215:1498–1501

    Article  Google Scholar 

  • Sitch S, Smith B, Prentice IC et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Change Biol 9:161–185

    Article  Google Scholar 

  • Sitch S, Brovkin V, von Bloh W et al (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Glob Biogeochem Cycles. doi:10.1029/2004GB002311

    Google Scholar 

  • Sitch S, Cox PM, Collins WJ et al (2007) Indirect radiative forcing of climate change through ozone effects on the land–carbon sink. Nature 448:791–794

    Article  Google Scholar 

  • Sokolov AP, Kicklighter DW, Melillo JM et al (2008) Consequences of considering carbon– nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796

    Article  Google Scholar 

  • Stöckli R, Lawrence DM, Niu GY et al (2008) Use of FLUXNET in the Community Land Model development. J Geophys Res. doi:10.1029/2007JG000562

    Google Scholar 

  • Thomas RQ, Canham CD, Weathers KC et al (2009) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3:13–17

    Article  Google Scholar 

  • Thornton PE, Doney SC, Lindsay K et al (2009) Carbon–nitrogen interactions regulate climate–carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosci 6:2099–2120

    Article  Google Scholar 

  • Wang YP, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon–climate feedback. Geophys Res Lett. doi:10.1029/2009GL041009

    Google Scholar 

  • Wang YP, Trudinger CM, Enting IG (2009) A review of applications of model–data fusion to studies of terrestrial carbon fluxes at different scales. Agric For Meteorol 149:1829–1842

    Article  Google Scholar 

  • Wania R, Ross I, Prentice IC (2009) Integrating peatlands and permafrost into a dynamic global vegetation model: 1. Evaluation and sensitivity of physical land surface processes. Glob Biogeochem Cycles. doi:10.1029/2008GB003412

    Google Scholar 

  • Zaehle S, Friedlingstein P, Friend AD (2010) Terrestrial nitrogen feedbacks may accelerate future climate change. Geophys Res Lett. doi:10.1029/2009GL041345

    Google Scholar 

  • Zaitchik BF, Macalady AK, Bonneau LR et al (2006) Europe’s 2003 heat wave: a satellite view of impacts and land–atmosphere feedbacks. Int J Climatol 26:743–769

    Article  Google Scholar 

Download references

Acknowledgments

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon B. Bonan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bonan, G.B. (2011). Forests and Global Change. In: Levia, D., Carlyle-Moses, D., Tanaka, T. (eds) Forest Hydrology and Biogeochemistry. Ecological Studies, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1363-5_35

Download citation

Publish with us

Policies and ethics