Skip to main content

A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations

  • Chapter
  • First Online:
Book cover The Diatom World

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 19))

Abstract

The diatoms are, without doubt, one of the most successful groups of unicellular algae and contribute significantly to the global carbon cycle. They arose within the heterokont lineage no earlier than 250 Ma. The radiation of the pigmented heterokonts and that of the haptophytes and dinoflagellates was likely a response to the Permian–Triassic (PT) extinction event when host cells with a red algal endosymbiont had an adaptive advantage. There are three major clades of diatoms, which have been formally recognized at the class level, and their monophyly is clearly linked to the type of analysis done, the alignment by the secondary structure of the ribosomal RNA molecule, and the number of out-groups. The auxospore continues to be the defining feature of the deeper clades/classes of the diatoms; the three classes being the radial centrics, the bipolar centrics, which include the radial Thalassiosirales, and the pennate diatoms. Additional important defining features are the position of the cribrum in loculate areolae and the presence or absence of a central structure in the annulus. Sublineages within each class generally follow traditional orders of diatoms based on morphology. The araphid diatoms are shown to comprise two groups: the basal araphids that have both a properizonial auxospore like the bipolar, mediophycean diatoms and a perizonial auxospore like the raphid diatoms and the core araphids that have a perizonial auxospore like the raphid diatoms. Raphid diatoms are monophyletic with the Eunotiales as a basal lineage. Canal raphe diatoms have arisen twice. The Bacillariales are a basal divergence, whereas the Surirellales diverged more recently with the canal raphe evolving from amphoroid diatoms through Entomoneis to Surirella. Nearly all of the cosmopolitan diatom species that have been investigated with molecular techniques have been shown to be composed of cryptic species. Breeding studies help to confirm that the cryptic species conform to a biological species concept and underscore the premise that the diatoms are underclassified as a group at the species level. Genetic diversity studies have shown that the diatoms have strongly structured populations both spatially and temporally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alverson, A.J. (2008) Molecular systematics and the diatom species. Protist 159: 339–353.

    Article  PubMed  Google Scholar 

  • Alverson, A.J., Cannone, J.J., Gutell, R.R. and Theriot, E.C. (2006) The evolution of elongate shape in diatoms. J. Phycol. 42: 655–668.

    Article  CAS  Google Scholar 

  • Amato, A., Kooistra, W.H.C.F., Hee, J., Ghiron, L., Mann, D.G., Pröschold, T. and Montresor, M. (2007) Reproductive isolation among sympatric cryptic species in marine diatoms. Protist 158: 193–207.

    Article  PubMed  CAS  Google Scholar 

  • Armbrust, E., Berges, J., Bowler, C., Green, B., Martinez, D., Putnam, N., Zhou, S., Allen, A. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Berney, C. and Pawlowski, J. (2006) A molecular time-scale for eukaryotic evolution recalibrated with the continuous microfossil record. Proc. R. Soc. B 273: 1867–1872.

    Article  CAS  Google Scholar 

  • Beszteri, B., Acs, E. and Medlin L.K. (2005a) Conventional and geometric morphometric studies of valve ultrastructural variation in two closely related Cyclotella species (Bacillariophyceae), Eur. J. Phycol. 40: 73–88.

    Article  Google Scholar 

  • Beszteri, B., Acs, E., and Medlin L.K. (2005b) Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. Protist 156: 317–333.

    Article  PubMed  CAS  Google Scholar 

  • Beszteri, B., John, U. and Medlin, L.K. (2007) Congruent variation at a nuclear and a plastid locus suggests that the diatom Cyclotella menegheniana is a species complex. Eur. J. Phycol. 42: 47–60.

    Article  CAS  Google Scholar 

  • Bhattacharya, D. and Medlin, L.K. (1995) The phylogeny of plastids. A review based on comparisons of small subunit ribosomal RNA coding regions. J. Phycol. 31: 489–498.

    Article  CAS  Google Scholar 

  • Bourne, C.E.M. (1992) Chloroplast DNA structure, variation and phylogeny in closely related species of Cyclotella. Ph.D. dissertation, University of Michigan, Ann Arbor.

    Google Scholar 

  • Bowler, C. et al. (2008) The Phaeodactylum genome reveals the dynamic nature and multi-lineage evolutionary history of diatom genomes. Nature 456: 239–244.

    Google Scholar 

  • Bruder, K. and Medlin, L.K. (2007) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedw. 85: 331–352.

    Article  Google Scholar 

  • Bruder, K. and Medlin, L.K. (2008a) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). II. The genus Hippondonta. Diatom Res 23: 283–329.

    Google Scholar 

  • Bruder, K. and Medlin, L.K. (2008b) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). III. Selected genera and families Diatom Res. 23: 331–347.

    Google Scholar 

  • Bruder, K., Sato, S. and Medlin, L.K. (2008) Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). IV. The genera Pinnularia and Caloneis. Diatom 24: 8–24.

    Google Scholar 

  • Casteleyna, G. Leliaert, F., Backeljau, T., Debeer, A-E., Kotaki, Y., Rhodes, L., Lundholm, N., Sabbe, K. and Vyverman, W. (2010) Limits to gene flow in a cosmopolitan marine planktonic diatom. PNAS 107: 12952–12957.

    Google Scholar 

  • Cavalier-Smith, T. and Chao, E.E.-Y. (2006) Phylogeny and megasystematics of phagotrophic heterokonts (Kingdom Chromista). J. Mol. Evol. 62: 388–420.

    Article  PubMed  CAS  Google Scholar 

  • Chepurenov, V.A. et al. (2005) Sexual reproduction, mating system, chloroplast dynamics and abrupt cell size reduction in Pseudo-nitzschia pungens from the North Sea (Bacillariophyta). Eur. J. Phycol. 40: 379–395.

    Article  Google Scholar 

  • Choi, H.G., Joo, H.M., Jung, W., Hong, S.S., Kang, J.S. and Kang, S.H. (2008) Morphology and phylogenetic relationships of some psychrophilic polar diatoms (Bacillariophyta). Nova Hedw. Beih. 133: 7–30.

    Google Scholar 

  • Cleve, P.T. (1894–1895) Synopsis of the naviculoid Diatoms. Kongl. svenska VetenskAkad. Handl. 26: 1–194.

    Google Scholar 

  • Cox, E.J. (1988) Variation within the genus Pinnularia Ehrenb.: further evidence for the use of live material in diatom systematics, In: F.E. Round (ed.) Proccedings of the 9th International Diatom Symposium. Biopress, Bristol, pp. 437–447.

    Google Scholar 

  • Cox, E.J. (2002) Diatoms: the evolution of morphogenetic complexity in single-celled plants, In: Q.C.B. Cronk, R.M. Bateman and J.A. Hawkins (eds.) Developmental Genetics and Plant Evolution. Taylor & Francis, London, pp. 459–492.

    Chapter  Google Scholar 

  • Cox, E.J. and Reid, G.R. (2004) Generic relationships within the Naviculineae: a preliminary cladistic analysis, In: M. Poulin (ed.) Proceedings of the 17th International Diatom Symposium. Biopress, Bristol, pp. 49–62.

    Google Scholar 

  • Crawford, R.M. and Sims, P.A. (2006) The diatoms Radialiplicata sol (Ehrenb.) Gleser and R. clavigera (Grun.) Gleser and their transfer to Ellerbeckia, thus a genus with freshwater and marine representatives. Nova Hedw. Beih. 130: 137–162.

    Google Scholar 

  • Crawford, R.M. and Sims, P.A. (2007) Some principles of chain formation as evidenced by the early diatom fossil record. Nova Hedw. Beih. 133: 171–186.

    Google Scholar 

  • Edgar, S.M. and Theiot, E.C. (2004) Phylogeny of Aulacoseira (Bacillariophyta) based on molecules and morphology. J. Phycol. 40: 772–788.

    Article  CAS  Google Scholar 

  • Ehara, M., Inagaki, Y., Watanabe, K.I. and Ohama, T. (2000) Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution. Curr. Genet. 37: 29–33.

    Article  CAS  Google Scholar 

  • Evans, K.M., Bates, S.S., Medlin, L.K. and Hayes, P.K. (2004) Microsatellite marker development and genetic variation in the toxic marine diatom Pseudo-nitzschia. multiseries (Bacillariophyceae). J. Phycol. 40: 911–920.

    Article  CAS  Google Scholar 

  • Evans, K.M., Kühn, S.F. and Hayes, P.K. (2005) High levels of genetic diversity and low levels of genetic differentiation in North Sea Pseudo-nitzschia pungens (Bacillariophyceae) populations. J. Phycol. 41: 506–514.

    Article  CAS  Google Scholar 

  • Evans, K.M., Wortley, A.H. and Mann, D.G. (2007) An assessment of potential diatom barcode genes (cox1, rbcL, 18S, ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist 158: 349–361.

    Article  PubMed  CAS  Google Scholar 

  • Evans, K.M., Chepurnov, V.A., Sluiman, H.J., Thomas, S.J., Spears, B.M. and Manna, D.G. (2009) Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist 160: 386–396.

    Article  PubMed  Google Scholar 

  • Falkowski, P.G., Katz, M.E., Knoll, A.J., Quigg, A., Raven, J.A., Schofield, O. and Taylor, F.J.R. (2004a) The evolution of the modern phytoplankton. Science 305: 354–359.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P.G., Schofield, O., Katz, M.E., van de Schootbrugge, B. and Knoll, A. (2004b) Why is the land green and the ocean red? In: H. Thierstein and J. Young (eds.) Coccolithophores – From Molecular Processes to Global Impact. Elsevier, Amsterdam, pp. 429–453.

    Google Scholar 

  • Finlay, B. (2002) Global dispersal of free-living microbial eukaryote species. Science 296: 1061–1063.

    Article  PubMed  CAS  Google Scholar 

  • Fox M.G. and Sorhannus, U.M. (2003) rpoA: useful gene for phylogenetic analysis in Diatoms. J. Eukaryot. Microbiol. 50: 471–475.

    Article  CAS  Google Scholar 

  • Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., Maier, U.G., Grossman, A.R., Bhattacharya, D. and Lohr, M. (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol. Biol. Evol. 25: 2653–2657.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, J.C. (1982) Physiological variation and electrophoretic banding-patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. Phycol. 18: 148–162.

    Article  CAS  Google Scholar 

  • Gersonde, R. and Harwood, D.M. (1990) Lower cretaceous diatoms from ODP leg 113 site 693 (Weddell Sea) II. Vegetative cells, In: P.F. Barker, J.P. Kennett et al. (eds) Proceedings of the Ocean Drilling Program Scientific Results vol. 113. College Station, Texas, pp. 365–403.

    Google Scholar 

  • Graham, L.E. and Wilcox, L.W. (2000) Algae. Prentice-Hall, London.

    Google Scholar 

  • Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L.K., Claustre, H., Loiseaux-de Goër, S. and Vaulot, D. (1999) Bolidomonas, a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J. Phycol. 35: 368–381.

    Article  Google Scholar 

  • Harwood, D.M., Chang, K.H. and Nikolaev, V.A. (2004) Late Jurassic to earliest Cretaceous diatoms from Jasong Synthem, Southern Korea: evidence for a terrestrial origin, In: A. Witkowski, T. Radziejewska, B. Wawrzyniak-Wydrowska, G. Daniszewska-Kowalczyk and M. Bąk (eds.) Abstracts, 18th International Diatom Symposium, Miedzyzdroje, Poland, p. 81.

    Google Scholar 

  • Hasle, G.R. (1974) The ‘mucilage pore’ of pennate diatoms. Nova Hedw. Beih. 45: 167–194.

    Google Scholar 

  • Hillis, D. M., Moritz, C. and Mable, B. K. (1996) Molecular Systematics. Sinauer Associates, Sunderland.

    Google Scholar 

  • Houk, V. and Klee, R. (2004) The stelligeroid taxa of the genus Cyclotella (Kutzing) Brebisson (Bacillariophyceae) and their transfer into the new genus Discostella gen. nov. Diatom Res. 19: 203–228.

    Google Scholar 

  • Ichinomiya, M., Yoshikawas, S., Kamiya, M., Ohki, K., Takaichi, S., and Kuwata, A. (2011) Isolation and characterisation of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio Region Western North Pacific. J. Phycol. 47: 144–151.

    Google Scholar 

  • Jablonski D. (2005) Mass extinctions and macroevolution. Paleobiology 31: 192–210.

    Article  Google Scholar 

  • Jung, S.W., Han, M-S. and Ki, J.-S. (2009) Molecular genetic divergence of the centric diatom Cyclotella and Discotella (Bacillariophyceae) revealed by nuclear ribosomal DNA comparisons. J. Applied Phycol. 22: 319–329.

    Google Scholar 

  • Kaczmarska, I., Ehrman, J.M. and Bates S.S. (2001) A review of auxospore structure, ontogeny and diatom phylogeny, In: A. Economou-Amilli (ed.) Proceedings of the 16th International Diatom Symposium. University of Athens, Greece, pp. 153–168.

    Google Scholar 

  • Kaczmarska,, I., Beaton, M., Benoit, A.C. and Medlin, L.K. (2005) Molecular phylogeny of selected members of the order Thalassiosirales (Bacillariophyta) and evolution of the fultoportula. J. Phycol. 42: 121–138.

    Article  Google Scholar 

  • Keeling, P.J. (2004) Diversity and evolutionary history of plastids and their hosts. Am. J. Bot. 91: 1481–1493.

    Article  PubMed  Google Scholar 

  • Kociolek, J.P. and Stoermer, E.F. (1993) The diatom genus Gomphocymbella In: O. Mller (ed.): Taxonomy, ultrastructure and phylogenetic relationships. Nova Hedw., Beih. 106: 71–92.

    Google Scholar 

  • Kooistra, W.H.C.F. and Medlin, L.K. (1996) The evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol. Phylogenet. Evol. 6: 391–407.

    Article  CAS  Google Scholar 

  • Kooistra, W.H.C.F., de Stefano, M., Mann, D.G., Salma, N. and Medlin, L.K. (2003) The phylogenetic position of Toxarium within the diatoms (Bacillariophyceae). J. Phycol. 39: 185–197.

    Article  CAS  Google Scholar 

  • Kooistra, W.H.C.F., Forlani, G., Sterrenburg, F.A.S. et al. (2004) Molecular phylogeny and morphology of the marine diatom Talaroneis posidoniae sp. nov. (Bacillariophyta) advocate the return of the Plagiogrammaceae to the pennate diatoms. Phycologia 43: 58–67.

    Article  Google Scholar 

  • Kooistra, W.H.C.F., Sarno, D., Andersen, R.A., Percopo I. and Zingone, A. (2006) Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159: 177–193.

    Article  Google Scholar 

  • Kooistra, W.H.C.F., Forlani, G. and De Stefano, M. (2008) Adaptation of araphid pennate diatoms to a planktonic existed. Mar. Ecol. 30: 1–15.

    Article  Google Scholar 

  • Krammer, K. (2000) The genus Pinnularia. In: Diatoms of Europe: diatoms of the European inland waters and comparable habitats. (Lange-Bertalot, H. ed.), 1–703, A.R.G. Gantner, Ruggell.

    Google Scholar 

  • Krammer, K. and Lange-Bertalot, H. (1985) Naviculaceae. Neue und wenig bekannte Taxa, neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattungen. Bibliotheca Diatomologica 9: 5–230.

    Google Scholar 

  • Kühn, S.F., Klein, G., Halliger, H., Hargraves, P. and Medlin,, L.K. (2006) A new diatom, Mediopyxis helysia gen. nov. and sp. nov. (Mediophyceae) from the North Sea and the Gulf of Maine as determined from morphological and phylogenetic characteristics. Nova Hedw. Beih. 130: 307–324.

    Google Scholar 

  • Kützing, F.T. (1844) Die kieselschaligen Bacillarien oder Diatomeen. Nordhausen, Ferd. Förstemann, 1–152.

    Google Scholar 

  • Lauterborn, R. (1896) Untersuchungen über Bau, Kernteilung und Bewegund der Diatomeen. Engleman Leipzig 165 pp.

    Google Scholar 

  • Lipps, J.H. (1970) Plankton evolution. Evolution 24: 1–22.

    Article  Google Scholar 

  • Mann, D.G. (1984) An ontogenetic approach to diatom systematics, In: Mann D.G. (ed.) Proceedings of the 7th International Diatom Symposium. Koeltz, Koenigstein, pp. 113–144.

    Google Scholar 

  • Mann, D.G. (1985) In vivo observation of plastid and cell division in raphid diatoms and their relevance to diatom systematics. Ann. Bot. 55: 95–108.

    Google Scholar 

  • Mann, D.G. (1989) The species concept in diatoms: evidence for morphologically distinct, sympatric gamodemes in four epipelic species. Plant Syst. Evol. 164: 215–237.

    Article  Google Scholar 

  • Mann, D.G. (1999) The species concept in diatoms. Phycologia 38: 437–495.

    Article  Google Scholar 

  • Mann, D.G. and Evans, K.M. (2008) Molecular genetics and the neglected art of diatomics, In: J. Lewis and J. Broadie (eds.) Unravelling the Algae, the Past, the Present and Future. Elsevier, London, pp. 231–265.

    Google Scholar 

  • Mann, D.G. and Marchant, H.J. (1989) The origin of the diatom and its life cycle, In: J.C. Green, B.S.C. Leadbeater and W.L. Diver (eds.) The Chromophyte Algae: Problems and Perspectives. Clarendon Press, Oxford, pp. 307–323.

    Google Scholar 

  • Medlin, L.K. (2002) Why silica or better yet why not silica? Speculations as to why the diatoms utilise silica as their cell wall material. Diatom Res. 17: 453–459.

    Google Scholar 

  • Medlin, L.K. (2004) Comment in reply to Schmid (2003), The evolution of the silicified diatom cell wall revisited. Diatom Res. 19: 345–351.

    Google Scholar 

  • Medlin, L.K. (2008) Molecular clocks and inferring evolutionary milestones and biogeography in the microalgae, In: H. Okada, S.F. Mawatari, N. Suzuki and P. Gautam (eds.) Origin and Evolution of Natural Diversity, Sapporo, Japan, pp. 31–42.

    Google Scholar 

  • Medlin, L.K. (2009) The use of the terms centrics and pennates. Diatom Res. 24: 499–501.

    Google Scholar 

  • Medlin, L.K. (2010a) Pursuit of a natural classification of diatoms: An incorrect comparison of ­published data. Eur. Phycol. J. 28: 261–275.

    Google Scholar 

  • Medlin, L.K. (2010b) A timescale for diatom evolution based on four molecular markers and assigning off ghost lineages to original discoverers. Abstracts of the 21st International Diatom Symposium, Minneapolis, Mn p. 35.

    Google Scholar 

  • Medlin, L.K. (2011) The Permian Triassic Extinction forces the radiation of the modern phytoplankton. Phycologia, 80: 10.

    Google Scholar 

  • Medlin, L.K. and Kaczmarska, I. (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270.

    Article  Google Scholar 

  • Medlin, L.K. and Sato, S. (2009) The biological reality of the core and basal groups of araphid diatoms. Diatom Res. 24: 503–508.

    Google Scholar 

  • Medlin, L.K., Williams, D.M. and Sims, P.A. (1993) The evolution of the diatoms (Bacillariophyta): I. Origin of the group and assessment of the monophyly of its major divisions. Eur. J. Phycol. 28: 261–275.

    Article  Google Scholar 

  • Medlin, L.K., Kooistra, W.C.H.F., Gersonde, R., Sims, P. and Wellbrock, U. (1997a) Is the origin of diatoms related to the end-Permian mass extinction. Nova Hedw. Festschrift für U. Geissler. 65: 1–11.

    Google Scholar 

  • Medlin, L.K., Kooistra, W.H.C.F., Potter, D., Saunders, G.W. and Andersen, R.A. (1997b) Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids, In: D. Bhattacharya (ed.) Origins of Algae and Their Plastids. Springer-Verlag, Wien, pp. 187–219.

    Google Scholar 

  • Medlin, L.K., Kooistra, W.H.C.F. and Schmid, A.M.M. (2000a) A review of the evolution of the diatoms – a total approach using molecules, morphology and geology, In: A. Witkowski and J. Sieminska (eds.) The Origin and Early Evolution of the Diatoms: Fossil, Molecular and Biogeographical Approaches. Szafer Institute of Botany, Polish Academy of Science, Cracow, pp. 13–35.

    Google Scholar 

  • Medlin, L.K., Lange, M. and Noethig, E.V. (2000b) Genetic diversity in the marine phytoplankton: a review and a consideration of Antarctic phytoplankton. Antarctic Sci. 12: 325–331.

    Article  Google Scholar 

  • Medlin, L., Jung, I., Bahulikar, R., Mendgen, K., Kroth, P. and Kooistra, W.H.C.F. (2008a) Evolution of the Diatoms. VI. Assessment of the new genera in the araphids using molecular data. Nova Hedw. Beih. 133: 81–100.

    Google Scholar 

  • Medlin, L.K., Sato, S., Mann, D.G. and Kooistra, W.C.H.F. (2008b) Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia and Toxarium within the bipolar centric diatoms (Mediophyceae, Bacillariophyta). J. Phycol. 44: 1340–1348.

    Article  CAS  Google Scholar 

  • Mereschkowsky, C. (1902–3) Les types de l’endochrome chez les Diatomées. Scripta Botanica. Horti Univ. Imp. Petropol. 21: 107–193.

    Google Scholar 

  • Moustafa A., Beszteri B., Maier U.G., Bowler C., Valentin K. and Bhattacharya, D. (2009) Genomic footprints of a cryptic endosymbiosis in diatoms. Sci. 324: 1724–1726.

    Google Scholar 

  • Pascher, A. (1921) Űber die einstimmungen zwischen Diatomeen, Heterokonten und Chrysomonaden. Ber. Deutsch Bot. Ges. 39: 236–240.

    Google Scholar 

  • Petersen, J., Teich, R., Brinkmann, H. and Cerff, R. (2007) A “green” phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J. Mol. Evol. 62: 43–57.

    Google Scholar 

  • Pfitzer, E. (1871) Untersuchungen fiber Bau und Entwicklung der Bacillariaceen (Diatomaceen). Bot. Abhandl. 2: 1–189.

    Google Scholar 

  • Phillippe, H., Sorhanuus, U., Baroin, A., Perasso, R., Gasse, F. and Adoutte, A. (1994) Comparison of molecular and paleotontoligcal diatom in diatom suggests a major gap in the fossil record. J. Evol. Biol. 7: 247–265.

    Article  Google Scholar 

  • Rampen, S.W., Schouten, S., Panoto, F.E., Brink, M., Andersen, R.A., Muyzer, G., Abbas, B., and Sinninghe Damsté, J.S. (2009) Phylogenetic position of Attheya longicornis and Attheya septentrionalis (Bacillariophyta). J. Phycol. 45: 444–453.

    Article  CAS  Google Scholar 

  • Round, F.E., Crawford, R.M. and Mann, D.G. (1990) The Diatoms: Biology and Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ruck, E.C. and Kociolek, J.P. (2004) A preliminary phylogeny of the family Surirellaceae (Bacillariophyta). Bib. Diatom 50: 1–235.

    Google Scholar 

  • Ruck, E.C. and Theriot, E.C. (2011) Origin and evolution of the canal raphe system in diatoms. ­Protist doi:10.1016/j.protis.2011.02.003.

    Google Scholar 

  • Rynearson, T.A. and Armbrust, E.V. (2000) DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol. Oceanogr. 45: 1329–1340.

    Article  Google Scholar 

  • Rynearson, T.A. and Armbrust, E.V. (2004) Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). J. Phycol. 40: 34–43.

    Article  Google Scholar 

  • Rynearson, T.A. and Armbrust, E.V. (2005) Maintenance of clonal diversity during a spring bloom of the centric diatom Ditylum brightwellii. Mol. Ecol. 14: 1631–1640.

    Article  PubMed  Google Scholar 

  • Rynearson, T.A., Newton, J.A. and Armbrust, E.V. (2006) Spring bloom development, genetic variation and population succession in the planktonic diatom Ditylum brightwellii. Limnol. Oceangr. 51: 1249–1261.

    Article  CAS  Google Scholar 

  • Sabbe, K., Vyverman, W. and Casteleyn, G. (2009) Species structure and biogeography of the marine diatom Pseudo-nitzschia pungens. Phycologist 76: 8 (abstract).

    Google Scholar 

  • Sarno, D., Kooistra, W.H.C.F., Medlin, L.K., Percopo, I. and Zingone, A. (2005) Diversity in the genus Skeletonema (Bacillariophyceae) Skeletonema costatum (Bacillario-phyceae) consists of several genetically and morphologically distinct species with the description of four new species. J. Phycol. 41: 151–176.

    Article  Google Scholar 

  • Sato, S. (2008) Phylogeny of araphid diatoms, inferred from morphological and molecular data. PhD Dissertation. University of Bremen. http, //elib.suub.uni-bremen.de/diss/docs/00011057.pdf.

    Google Scholar 

  • Schmid, A.-M.M. (1988) The special Golgi–ER–mitochondrium unit in the diatom genus Coscinodiscus. Pl. Syst. Evol. 158: 211–233.

    Article  Google Scholar 

  • Sims, P.A., Mann, D.G. and Medlin, L.K. (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402.

    Article  Google Scholar 

  • Simonsen R. (1972) Ideas for a more natural system of the centric diatoms. Nova Hedwigia, Beiheft 39: 37–54.

    Google Scholar 

  • Sinninghe-Damsté, J.S., Muyzer, G., Abbas, B., Rampen, S.W., Masse, G., Allard, W.G., Belt, S.T., Robert, J.-M., Rowland, S.J., Moldowan, J.M., Barbanti, S.M., Fago, F.J., Denisevich, P., Dahl, J., Trindade, L.A.F. and Schouten, S. (2004) The rise of the rhizosolenoid diatoms. Science 304: 584–587.

    Article  Google Scholar 

  • Sörhannus, U. (1997) The origination time of diatoms: an analysis based on ribosomal RNA data. Micropaleontology 43: 215–218.

    Article  Google Scholar 

  • Sorhannus, U. (2004) Diatom phylogenetics inferred based on direct optimization of nuclear-encoded SSU rRNA sequences. Clad 20: 487–497.

    Google Scholar 

  • Sörhannus, U. (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar. Micropaleont. 65: 1–12.

    Article  Google Scholar 

  • Sörhannus, U., Gasse, F., Perasso, R. and Baroin Tourancheau, A. (1995) A preliminary phylogeny of diatoms based on 28S ribosomal RNA sequence data. Phycologia 34: 65–73.

    Article  Google Scholar 

  • Theriot, E., Alverson, D. and Gutell, R. (2009) The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. Eur. J. Phycol 44: 277–290.

    Google Scholar 

  • Van den Hoek, C., Mann, D.G. and Jahns, H.M. (1995) Algae, an Introduction to Phycology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Van Mooy, B.A.S., Fredricks, H.F., Pedler, B.E., Dyhrman, A.T., Karl, D.M., Koliizek, M., Lomas, M.W., Mincer, T.J., Moore, L.R., Moutin, T., Rappe, M.W. and Webb, E.A. (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458: 69–72.

    Article  PubMed  Google Scholar 

  • Vanormelingen, P., Chepurnov, V.A., Mann, D.G., Cousin, S. and Vyverman, W. (2007) Congruence of morphological, reproductive and ITS rDNA sequence data in some Australasian Eunotia bilunaris (Bacillariophyta). Eur. J. Phycol. 42: 61–79.

    Article  CAS  Google Scholar 

  • Vanormelingen, P., Chepurnov, V.A., Mann, D.G., Sabbe, K. and Vyverman, W. (2008a) Genetic divergence and reproductive barriers among morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta). Protist 159: 73–90.

    Article  PubMed  CAS  Google Scholar 

  • Von Stosch, H. (1950) Oogany in a centric diatom. Nature 165: 531–532.

    Article  Google Scholar 

  • Williams, D.M. (2007) Classsification and diatom systematics, the past, the present and the future, In: J. Brodie and J. Lewis (eds.) Unravelling the Algae. CRC Press, Boca Raton, pp. 57–91.

    Chapter  Google Scholar 

  • Williams, D.M. and Kociolek, J.P. (2007) The rejection of paraphyletic taxa. Eur. J. Phycol. 42: 313–319.

    Google Scholar 

  • Wood, A.M., Lande, R. and Fryxell, G.A. (1987) Quantitative genetic analysis of morphological variation in an antarctic diatom grown at two light intensities. J. Phycol. 23: 42–54.

    Google Scholar 

  • Yoon, H.S., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA 99: 15507–15512.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H.S., Hackett, J., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21: 809–818.

    Article  PubMed  CAS  Google Scholar 

  • Zingone, A., Percopo, I., Sims, P. and Sarno, D. (2005) Diversity in the genus Skeletonema (Bacillariophyceae) I. A re-examination of the type material of S. costatum with the description of S. grevillei sp. nov. J. Phycol. 41: 135–150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda K. Medlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Medlin, L.K. (2011). A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations. In: Seckbach, J., Kociolek, P. (eds) The Diatom World. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1327-7_4

Download citation

Publish with us

Policies and ethics