Skip to main content

Unsteady Flame Embedding

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions—including extinction, re-ignition, and history effects—via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annaswamy, A.M., Ghoniem, A.F.: Active control of combustion instability: theory and practice. IEEE Control Syst. Mag. 22, 37–54 (2002)

    Article  Google Scholar 

  2. Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 27, 917–25 (1998)

    Google Scholar 

  3. Chakraborty, N., Cant, R.S.: Effects of Lewis number on turbulent scalar transport and its modeling in turbulent premixed flames. Combust. Flame 156, 1427–1444 (2009)

    Article  Google Scholar 

  4. Chakraborty, N., Cant, R.S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame 137, 129–147 (2004)

    Article  Google Scholar 

  5. Chorin, A.J.: Vortex sheet aproximation of boundary layers. J. Comput. Phys. 27, 428–442 (1978)

    Article  MATH  Google Scholar 

  6. Chorin, A.J.: Flame advection and propagation algorithm. J. Comput. Phys. 35, 1–11 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Darabiha, N.: Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry. Combust. Sci. Technol. 86, 163–181 (1992)

    Article  Google Scholar 

  8. Driscoll, J.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91–134 (2008)

    Article  Google Scholar 

  9. Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–190 (1996)

    Article  Google Scholar 

  10. Echekki, T., Kerstein, A.R., Dreeben, T.D., Chen, J.Y.: ‘One-dimensional turbulence’ simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125, 1083–1105 (2001)

    Article  Google Scholar 

  11. Eggenspieler, G., Menon, S.: Large-eddy simulation of pollutant emission in a doe-hat combustor. J. Propuls. Power 20, 1076–1085 (2004)

    Article  Google Scholar 

  12. Egolfopoulos, F.N.: Dynamics and structure of unsteady, strained, laminar premixed flames. Proc. Combust. Inst. 25, 1365–1373 (1994)

    Google Scholar 

  13. Egolfopoulos, F.N., Campbell, C.S.: Unsteady counterflowing strained diffusion flames: diffusion-limited frequency response. J. Fluid Mech. 318, 1–29 (1996)

    Article  MATH  Google Scholar 

  14. Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4, 393–422 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. El-Asrag, H.A., Lu, T., Law, C., Menon, S.: Simulation of soot formation in turbulent premixed flames. Combust. Flame 150, 108–126 (2007)

    Article  Google Scholar 

  16. El-Asrag, H.A., Menon, S.: Large eddy simulation of soot formation in a turbulent non-premixed jet flame. Combust. Flame 156, 385–395 (2009)

    Article  Google Scholar 

  17. El-Asrag, H.A., Nave, J.C., Ghoniem, A.F.: An algorithm for accurate prediction of turbulent burning velocity for under-resolved premixed flames. In: Eastern States Section of the Combustion Institute. College Park, Maryland, Oct. 18–21 (2009)

    Google Scholar 

  18. El-Asrag, H.A., Nave, J.C., Ghoniem, A.F.: Unsteady flame embedding (UFE) subgrid model for turbulent premixed combustion simulations. In: 48th Aerospace Sciences Meeting and Exhibit, AIAA-2010-201. AIAA, Orlando, FL (2010)

    Google Scholar 

  19. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using fpi flamelet tabulation. Combust. Flame 140, 147–160 (2005)

    Article  Google Scholar 

  20. Ghoniem, A.F., Chorin, A.J., Oppenheim, A.K.: Numerical modeling of turbulent combustion in premixed gases. Proc. Combust. Inst. 18, 1375–1383 (1981)

    Google Scholar 

  21. Ghoniem, A.F., Chorin, A.J., Oppenheim, A.K.: Numerical modeling of turbulent flow in a combustion tunnel. Phil. Trans. R. Soc. Lond. A304, 303–325 (1982)

    Article  Google Scholar 

  22. Ghoniem, A.F., Knio, O.M.: Numerical simulation of flame propagation in constant volume chambers. Proc. Combust. Inst. 21, 1313–1320 (1986)

    Google Scholar 

  23. Ghoniem, A.F., Soteriou, M.C., Knio, O.M.: Effect of steady and periodic strain on unsteady flamelet combustion. Proc. Combust. Inst. 24, 223–230 (1992)

    Google Scholar 

  24. Hawkes, E.R., Cant, R.S.: A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)

    Article  Google Scholar 

  25. Henrick, A.K., Aslam, T.D., Powers, J.M.: Highly accurate numerical simulations of pulsating one-dimensional detonations. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA-2005-1311 (2005)

    Google Scholar 

  26. Ihme, M., Cha, C.M., Pitsch, H.: Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach. Proc. Combust. Inst. 30, 793–800 (2005)

    Article  Google Scholar 

  27. Jenkins, K., Cant, R.S.: Curvature effects on flame kernels in a turbulent environment. Proc. Combust. Inst. 29, 2023–2029 (2002)

    Article  Google Scholar 

  28. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. II: Application to shear layer mixing. Combust. Flame 75, 397–413 (1989)

    Article  Google Scholar 

  29. Kerstein, A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Knio, O.M., Shi, X., Ghoniem, A.F.: Lagrangian simulation of a thin non-premixed flame in the field of an asymmetric layer. Combust. Flame 106, 41–61 (1996)

    Article  Google Scholar 

  31. Knudsen, E., Pitsch, H.: A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combust. Flame 154, 740–760 (2008)

    Article  Google Scholar 

  32. Law, C.K.: Combustion Physics, 1 edn. Cambridge University Press, New York, NY 10014-2473, USA (2006)

    Book  Google Scholar 

  33. Lodato, G., Domingo, P., Vervisch, L., Veynante, D.: Scalar variances: LES against measurements and mesh optimization criterion: scalar gradient: a three-dimensional estimation from planar measurements using DNS. Proceedings of the Summer Program, pp. 387–398 (2008)

    Google Scholar 

  34. MacCormack, R.W.: Private communication

    Google Scholar 

  35. Marzouk, Y.M.: The effect of flow and mixture inhomogeneity on the dynamics of strained flames. S.M. thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering (1999)

    Google Scholar 

  36. Marzouk, Y.M., Ghoniem, A.F., Najm, H.N.: Dynamic response of strained premixed flames to equivalence ratio gradients. Proc. Combust. Inst. 28, 1859–1866 (2000)

    Article  Google Scholar 

  37. Marzouk, Y.M., Ghoniem, A.F., Najm, H.N.: Towards a flame embedding model for turbulent combustion simulation. AIAA J. 41, 641–652 (2003)

    Article  Google Scholar 

  38. Menon, S., Kerstein, A.: Stochastic simulation of the structure and propagation rate of turbulent premixed flames. Proc. Combust. Inst. 24, 443–450 (1992)

    Google Scholar 

  39. Nguyen, P.D., Vervisch, L., Subramanian, V., Domingo, P.: Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157, 43–61 (2010)

    Article  Google Scholar 

  40. Pernice, M., Walker, H.F.: NITSOL: A Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19, 302–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  41. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)

    Google Scholar 

  42. Peters, N.: Turbulent combustion, 4 Edn. Cambridge University Press (2006)

    Google Scholar 

  43. Peters, N.: Multiscale combustion and turbulence. Proc. Combust. Inst. 32, 1–25 (2009)

    Article  Google Scholar 

  44. Petrov, C.: Numerical simulation of reacting flows with complex chemistry using flame embedding. Ph.D. thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering (1997)

    Google Scholar 

  45. Petrov, C., Ghoniem, A.F.: The transient response of strained laminar-premixed flames. Combust. Flame 102, 401–417 (1995)

    Article  Google Scholar 

  46. Petrov, C., Ghoniem, A.F.: Numerical simulation of reacting flows with multi-step kinetics. In: The 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January, AIAA-97-0291 (1997)

    Google Scholar 

  47. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Pitsch, H.: Unsteady flamelet modeling of differential diffusion in turbulent jet diffusion flames. Combust. Flame 123, 358–374 (2000)

    Article  Google Scholar 

  49. Pitsch, H.: Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst. 29, 1971–1978 (2002)

    Article  Google Scholar 

  50. Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143, 587–598 (2005)

    Article  Google Scholar 

  51. Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–82 (2006)

    Article  MathSciNet  Google Scholar 

  52. Pitsch, H., de Lageneste, L.D.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2001–2008 (2002)

    Article  Google Scholar 

  53. Poinsot, T., Veynante, D., Candel, S.: Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561–606 (1991)

    Google Scholar 

  54. Pope, S.: Computations of turbulent combustion. Proc. Combust. Inst. 23, 591–612 (1990)

    Google Scholar 

  55. Rossow, C.C.: Efficient computation of compressible and incompressible flows. J. Comput. Phys. 220, 879–899 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  56. Rutland, C., Ferziger, J.: Unsteady strained premixed laminar flames. Combust. Sci. Technol. 73, 305–326 (1990)

    Article  Google Scholar 

  57. Sen, B., Menon, S.: Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames. Combust. Flame 157, 62–74 (2010)

    Article  Google Scholar 

  58. Shepherd, I., Cheng, R., Plessing, T., Kortschik, C., Peters, N.: Premixed flame front structure in intense turbulence. Proc. Combust. Inst. 29, 1833–1840 (2002)

    Article  Google Scholar 

  59. Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane- and propane-air flamelets. Combust. Flame 85, 285–299 (1991)

    Article  Google Scholar 

  60. Subramanian, V., Domingo, P., Vervisch, L.: Large eddy simulation of forced ignition of an annular bluff-body burner. Combust. Flame 157, 579–601 (2010)

    Article  Google Scholar 

  61. Swanson, R., Turkel, E., Rossow, C.C.: Convergence acceleration of Runge-Kutta schemes for solving the Navier-Stokes equations. J. Comput. Phys. 224, 365–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  62. Thibaut, D., Candel, S.: Numerical study of unsteady turbulent premixed combustion: Application to flashback simulation. Combust. Flame 113, 53–65 (1998)

    Article  Google Scholar 

  63. Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153, 394–416 (2008)

    Article  Google Scholar 

  64. Westbrook, C.K., Mizobuchi, Y., Poinsot, T.J., Smith, P.J., Warantz, J.: Computational combustion. Proc. Combust. Inst. 30, 125–157 (2005)

    Article  Google Scholar 

  65. Williams, F.A.: Combustion Theory: The fundamental theory of chemically reacting flow systems. Addison-Wesley, USA (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam A. El-Asrag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

El-Asrag, H.A., Ghoniem, A.F. (2011). Unsteady Flame Embedding. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_12

Download citation

Publish with us

Policies and ethics