Skip to main content

Merging Satellite Measurement with Ground-Based Air Quality Monitoring Data to Assess Health Effects of Fine Particulate Matter Pollution

  • Chapter
  • First Online:
  • 2314 Accesses

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 4))

Abstract

Geospatial technologies have been widely used in environmental health research, including air pollution and human health. This chapter demonstrates the potential of integrating satellite air quality measurement with ground-based PM2.5 data to explore health effects of fine particulate air pollution. This study assesses the association of estimated PM2.5 concentration with chronic coronary heart disease (CCHD) mortality. Years 2003 and 2004 daily MODIS (Moderate Resolution Imaging Spectrometer) Level 2 AOD images were collated with US EPA PM2.5 data covering the conterminous USA. Pearson’s correlation analysis and geographically weighted regression (GWR) found that the relationship between PM2.5 and AOD is not spatially consistent across the conterminous states. GWR predicts well in the east and poorly in the west. The GWR model was used to derive a PM2.5 grid surface for the eastern US (RMSE = 1.67 μg/m3). A Bayesian hierarchical model found that areas with higher values of PM2.5 show high rates of CCHD mortality: \(\beta _{{\textrm{PM}}_{2.5} } \)= 0.802, posterior 95% Bayesian credible interval (CI) = (0.386, 1.225). Aerosol remote sensing and GIS spatial analyses and modelling could help fill pervasive data gaps in ground-based air quality monitoring that impede efforts to study air pollution and protect public health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIC:

Akaike Information Criterion

AOD:

Aerosol optical depth

AQS:

Air Quality System

BUGS :

Bayesian inference using Gibbs sampling

CAR:

Conditional auto-regression

CCHD:

Chronic coronary heart disease

EPA:

Environmental Protection Agency

GOES:

Geostationary Operational Environmental Satellite

GWR:

Geographically weighted regression

ICD-10:

International Classification of Disease, 10th Revision

LIDAR:

Light detection and ranging

MCMC:

Markov chain Monte Carlo

MODIS:

Moderate Resolution Imaging Spectrometer

PM:

Particulate matter

SMR:

Standardized morbidity/mortality rate

USGS:

US Geological Survey

References

  • Al-Saadi J, Szykman J, Pierce RB, Kittaka C, Neil D, Chu DA, Remer. L, Gumley L, Prins E, Weinstock L, MacDonald C, Wayland R, Dimmick F, Fishman J (2005) Improving national air quality forecasts with satellite aerosol observations. Bull Am Meteorol Soc 86(9):1249–1261

    Article  Google Scholar 

  • Anderson HR, Atkinson RW, Bremner SA, Marston L (2003) Particulate air pollution and hospital admissions for cardiorespiratory diseases: are the elderly at greater risk? Eur Respir J 21(Suppl):39–46

    Article  Google Scholar 

  • Apituley MS, Koelemeijer R, Timmermans R, Schoemaker R, de Leeuw G (2008). Construction of satellite derived PM2.5 maps using the relationship between AOD and PM2.5 at the Cabauw experimental site for atmospheric research (CESAR) – the Netherlands. In: IEEE international geoscience & remote sensing symposium, Boston, MA, 6–11 July 2008

    Google Scholar 

  • Besag J, York Y, Mollie A (1991) Bayesian image restoration with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43(1):1–59

    Article  Google Scholar 

  • Chu DA, Kaufman YJ, Zibordi G, Chern JD, Mao J, Li C, Holben BN (2003) Global monitoring of air pollution over land from EOS-Terra MODIS. J Geophys Res 108(D21):4661

    Article  Google Scholar 

  • Curtin LR, Klein RJ (1995) Direct standardization (age-adjusted death rates). statistical notes, No. 6. National Center for Health Statistics, Hyattsville, Maryland

    Google Scholar 

  • Engel-Cox JA, Holloman CH, Coutant BW, Hoff RM (2004) Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos Environ 38:2495–2509

    Article  CAS  Google Scholar 

  • Fotheringham SA, Chris B, Martin C (2002) Geographically weighted regression: the analysis of spatially varying relationships. New York, NY, Wiley

    Google Scholar 

  • Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892

    Article  CAS  Google Scholar 

  • HELIX-Atlanta (Health & Environment Linked for information exchange, Atlanta). http://www.cdc.gov/nceh/tracking/helix.htm. Accessed 21 March 2009

  • Hu Z, Liebens J, Rao KR (2008) Linking stroke mortality with air pollution, income, and greenness in northwest Florida: an ecological geographical study. Int J Health Geogr 7:20

    Google Scholar 

  • Hutchison KD (2003) Applications of MODIS satellite data and products for monitoring air quality in the state of Texas. Atmos Environ 37:2403–2412

    Article  CAS  Google Scholar 

  • Hutchison KD, Smith S, Faruqui SJ (2005) Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system. Atmos Environ 39:7190–7203

    Article  CAS  Google Scholar 

  • Kahn R, Banerjee P, McDonald D, Diner D (1998) Sensitivity of multiangle imaging to aerosol optical depth and to pure-particle size distribution and composition over ocean. J Geophys Res 103(D24):32195–32213

    Article  Google Scholar 

  • Klot S, Peters A, Aalto P, Bellander T, Berglind N, D’Ippoliti D, Elosua R, Hörmann A, Kulmala M, Lanki T, Löwel H, Pekkanen J, Picciotto S, Sunyer J, Forastiere F (2005) Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 112:3073–3079

    Article  Google Scholar 

  • Kumar N, Chu A, Foster A (2007) An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos Environ 41:4492–4503

    Article  CAS  Google Scholar 

  • Le Tertre A, Medina S, Samoli E, Forsberg B, Michelozzi P, Boumghar A, Vonk JM, Bellini A, Atkinson R, Ayres JG, Sunyer J, Schwartz J, Katsouyanni K (2002) Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. J Epidemiol Community Health 56:773–779

    Article  Google Scholar 

  • Liu Y, Franklin M, Kahn R, Koutrakis P (2007) Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS. Remote Sens Environ 107(1–2):33–44

    Article  Google Scholar 

  • Liu Y, Paciorek CJ, Koutrakis P (2009) Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ Health Perspect. doi:10.1289/ehp.0800123

    Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Maheswaran R, Haining RP, Brindley P, Law J, Pearson T, Fryers PR, Wise S, Campbell MJ (2005) Outdoor air pollution, mortality, and hospital admissions from coronary heart disease in Sheffield, UK: a small-area level ecological study. Eur Heart J 26:2543–2549

    Article  CAS  Google Scholar 

  • Mausner RB, Kramer S (1985) Epidemiology: an introductory text. W. B. Saunders, Philadelphia, PA

    Google Scholar 

  • Mille KA, Siscovick DS, Sheppard L, Shepher K, Sullivan JH, Anderson GL, Kaufman JD (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Eng J Med 356:447–458

    Article  Google Scholar 

  • Mollie A (1986) Bayesian mapping of disease. In Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain monte carlo in practice. Chapman and Hall, New York, NY, pp. 359–379

    Google Scholar 

  • Murakami Y, Ono M (2006) Myocardial infarction deaths after high level exposure to particulate matter. J Epidemiol Community Health 60:262–266

    Article  Google Scholar 

  • NASA Level 1 and Atmosphere Archive and Distribution System (LAADS Web). http://ladsweb.nascom.nasa.gov/. Accessed 20 July 2008

  • Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    Article  CAS  Google Scholar 

  • Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103:2810–2815

    CAS  Google Scholar 

  • Poloniecki JD, Atkinson RW, de Leon AP, Anderson HR (1997) Daily time series for cardiovascular hospital admissions and previous day’s air pollution in London, UK. Occup Environ Med 54:535–540

    Article  CAS  Google Scholar 

  • Pope CA III (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspect 108(Supl 4):713–723

    Article  CAS  Google Scholar 

  • Pope CAIII, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287:1132–1141

    Article  CAS  Google Scholar 

  • Remer LA, Kaufman YJ, Tanre D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–972

    Article  Google Scholar 

  • Remer LA, Tanré D, Kaufman YJ (2006). Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005. http://modis-atmos.gsfc.nasa.gov/_docs/MOD04:MYD04_ATBD_C005_rev1.pdf. Accessed 12 Oct 2008

  • Schafer K, Harbusch A, Emeis S, Koepke P, Wiegner M (2008) Correlation of aerosol mass near the ground with aerosol optical depth during two seasons in Munich. Atmos Environ 42:4036–4046

    Article  Google Scholar 

  • Schwartz J (2000) Harvesting and long-term exposure effects in the relationship between air pollution and mortality. Am J Epidemiol 151:440–448

    CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to global change. Wiley, New York, NY

    Google Scholar 

  • Suwa T, Hogg JC, Quinlan KB, Ohgami A, Voncent R, van Eeden SF (2002) Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol 39(6):935–942

    Article  CAS  Google Scholar 

  • Tinkle S, Gant M, Humble M, Gary Foley G, Garcia V, Bond A (2007). Integrated earth observations: Application to air quality and human health. http://www.epa.gov/geoss/pdf/ieo-workshop.pdf. Accessed 3 Nov 2008

  • U.S. CDC 2008. Centers for Disease Control and Prevention, National Center for Health Statistics. compressed mortality file 1999–2005. CDC WONDER On-line Database, compiled from Compressed Mortality File 1999–2005 Series 20 No. 2 K. http://wonder.cdc.gov/cmf-icd10.html. Accessed 10 Oct 2008

  • US EPA. Air Quality System (AQS) online Data Mart. http://www.epa.gov/ttn/airs/aqsdatamart/index.htm. Accessed 10 Oct 2008

  • USGS. Adjacency for WinBUGS Tool. http://www.umesc.usgs.gov/management/dss/adjacency_tool.html. Accessed 8 Feb 2009

  • van Donkelaar A, Martin RV, Park RJ (2006) Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J Geophys Res 111(D21). doi:10.1029/2005JD006996

    Google Scholar 

  • Vidot J, Santer R, Ramon D (2007) Atmospheric particulate matter (PM) estimation from SeaWiFS imagery. Remote Sens Environ 111:1–10

    Article  Google Scholar 

  • Zanobetti A, Schwartz J (2005) The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environ Health Persp 113(8):978–982

    Article  Google Scholar 

Download references

Acknowledgments

The studies reported in this chapter have been partially supported by US EPA Cooperative Agreement Award X-9745002 to the University of West Florida. The content of this report are solely the responsibility of the authors and do not necessarily represent the official views of the US EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hu, Z., Liebens, J., Rao, K.R. (2011). Merging Satellite Measurement with Ground-Based Air Quality Monitoring Data to Assess Health Effects of Fine Particulate Matter Pollution. In: Maantay, J., McLafferty, S. (eds) Geospatial Analysis of Environmental Health. Geotechnologies and the Environment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0329-2_20

Download citation

Publish with us

Policies and ethics