Skip to main content

Modeling the Storm Time Electrodynamics

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Abstract

A model that electrodynamically couples inner magnetosphere, ionosphere, plasmasphere, thermosphere, and electrodynamics has been developed and is used to separate sources of the storm time electric fields between the magnetospheric, ionospheric, and thermospheric processes and to investigate their nonlinear interactions. The two sources of the electric-field disturbances, prompt penetration (PP) and disturbance dynamo (DD), have been identified in the coupled model results. Furthermore, the results suggest that the sources of variability in storm time electric fields are associated with the nonlinear interaction between the PP and DD, such that the response depends on the preconditioning of the coupled system. The preconditioning in this study is caused by the fact that the magnetosphere, ionosphere, and thermosphere respond to external forcing as a coupled system. The results clearly demonstrate the need for a fully coupled model of magnetosphere–ionosphere–thermosphere, in order to determine the preconditioning effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686

    Article  Google Scholar 

  • Fejer BG, Jensen JW, Kikuchi T, Abdu MA, Chau JL (2007) Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res 112:A10304. http://doi:10.1029/2007JA012376

    Article  Google Scholar 

  • Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial electric fields. J Geophys Res 102:24,047

    Article  Google Scholar 

  • Fejer BG, Spiro RW, Wolf RA, Foster JC (1990) Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results. Ann Geophys 8:441

    Google Scholar 

  • Forbes JM, Harel M (1989) Magnetosphere-thermosphere coupling: an experiment in interactive modeling. J Geophys Res 94:2631–2644

    Article  Google Scholar 

  • Fuller-Rowell TJ, Evans DS (1987) Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J Geophys Res 92:7606–7618

    Article  Google Scholar 

  • Fuller-Rowell TJ, Millward GH, Richmond AD, Codrescu MV (2002) Stormtime changes in the upper atmosphere at low latitudes. J Atmos Solar-Terr Phys 64:1383

    Article  Google Scholar 

  • Fuller-Rowell TJ, Richmond AD, Maruyama N (2008) Global modeling of storm-time thermospheric dynamics and electrodynamics. In: Kintner PM Jr, Coster AJ, Fuller-Rowell T, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitude ionospheric dynamics and disturbances. Geophysical monograph series, vol 181, 10.1029/181GM18. American Geophysical Union, Washington, DC 187–200

    Google Scholar 

  • Garner TW (2003) Numerical experiments on the inner magnetospheric electric field. J Geophys Res 108(A10): 1373. http://doi:10.1029/2003JA010039

    Article  Google Scholar 

  • Heelis RA, Lowell JK, Spiro RW (1982) A model of the high-latitude ionospheric convection pattern. J Geophys Res 87:6339–6345

    Article  Google Scholar 

  • Huang CY, Frank LA (1986) A statistical study of the central plasma sheet: implications for substorm models. Geophys Res Lett 13:652–655

    Article  Google Scholar 

  • Huang CY, Frank LA (1994) A statistical survey of the central plasma sheet. J Geophys Res 99:83

    Article  Google Scholar 

  • Huang C-M, Richmond AD, Chen M-Q (2005) Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields. J Geophys Res 110:A05312. http://doi:10.1029/2004JA010994

    Article  Google Scholar 

  • Huba JD, Joyce G, Sazykin S, Wolf RA, Spiro RW (2005) Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys Res Lett 32(L23101). http://doi:10.1029/2005GL024162

  • Jaggi RK, Wolf RA (1973) Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J Geophys Res 78(16):2852–2866

    Article  Google Scholar 

  • Kelley MC, Fejer BG, Gonzales CA (1979) An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301

    Article  Google Scholar 

  • Maruyama N, Richmond AD, Fuller-Rowell TJ, Codrescu MV, Sazykin S, Toffoletto FR, Spiro RW, Millward GH (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys Res Lett http://doi:10.1029/2005GL023763

  • Maruyama N, Sazykin S, Spiro RW, Anderson D, Anghel A, Wolf RA, Toffoletto FR, Fuller-Rowell TJ, Codrescu MV, Richmond AD, Millward GH (2007) Modeling storm-time electrodynamics of the low latitude ionosphere thermosphere system: can long lasting disturbance electric fields be accounted for? J Atmos Solar-Terr Phys. http://doi:10.1016/j.jastp.2006.08.020

  • Millward GH, Moffett RJ, Quegan S, Fuller-Rowell TJ (1996) A coupled thermosphere-ionosphere-plasmasphere model (CTIP). In: Schunk RW (ed) STEP hand book. Utah State University, Logan, UT, pp 239–279

    Google Scholar 

  • Millward GH, Muller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24,733–24,744

    Google Scholar 

  • Nishida A (1968) Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations. J Geophys Res 75:5549

    Article  Google Scholar 

  • Peymirat C, Richmond AD, Emery BA, Roble RG (1998) A magnetosphere-thermosphere-ionosphere-electrodynamics general-circulation model. J Geophys Res 103:17,467–17,477

    Google Scholar 

  • Peymirat C, Richmond AD, Kobea AT (2000) Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. J Geophys Res 105:22,991

    Article  Google Scholar 

  • Richmond AD (1995) Ionospheric electrodynamics using magnetic APEX coordinates. J Geomag Geoelect 47:191–212

    Google Scholar 

  • Richmond AD, Peymirat C, Roble RG (2003) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res 108(A3). http://doi:10.1029/2002JA009758

  • Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19:601–604

    Article  Google Scholar 

  • Sazykin S (2000) Theoretical studies of penetration of magnetospheric electric fields to the ionosphere. Ph.D. thesis, Utah State University, Logan, UT

    Google Scholar 

  • Scherliess L, Fejer BG (1997) Storm time dependence of equatorial disturbance dynamo zonal electric fields. J Geophys Res 102(A12):24,037

    Google Scholar 

  • Senior C, Blanc M (1984) On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J Geophys Res 89:261

    Article  Google Scholar 

  • Spiro RW, Wolf RA, Fejer BG (1988) Penetration of high-latitude electric-field effects to low latitudes during sundial 1984. Ann Geophys 6:39

    Google Scholar 

  • Toffoletto FR, Sazykin S, Spiro RW, Wolf RA (2003) Inner magnetospheric modeling with the rice convection model. Space Sci Rev 107:175–196

    Article  Google Scholar 

  • Torr DG, Torr MR (1979) Chemistry of the thermosphere and ionosphere. J Atmos Solar-Terr Phys 41:797–839

    Article  Google Scholar 

  • Tsyganenko NA, Singer HJ, Kasper JC (2003) Storm-time distortion of the inner magnetosphere: how severe can it get? J Geophys Res 108(A5). http://doi:10.1029/2002JA009808

  • Vasyliunas VM (1970) Mathematical models of magnetospheric convection and its coupling to the ionosphere. In: McCormac BM (ed) Particles and fields in the magnetosphere. D. Reidel, Hingahm, MA, pp 60–71

    Google Scholar 

  • Wang W, Wiltberger M, Burns AG, Solomon SC, Killeen TL, Maruyama N, Lyon JG (2004) Initial results from the coupled magnetosphere-ionosphere-thermosphere model: thermosphere-ionosphere responses. J Atmos Solar-Terr Phys 66:1425. http://doi:10.1016/j.jastp.2004.04.008

    Article  Google Scholar 

  • Wiltberger M, Wang W, Burns AG, Solomon SC, Lyon JG, Goodrich CC (2004) Initial results from the coupled magnetosphere-ionosphere-thermosphere model: magnetospheric and ionospheric responses. J Atmos Solar-Terr Phys 66:1411. http://doi:10.1016/j.jastp.2004.04.026

    Article  Google Scholar 

  • Wolf RA (1983) The quasi-static (slow-flow) region of the magnetosphere. In: Carovillano RL, Forbes JM (eds) Solar-terrestrial physics: principles and theoretical foundations. D. Reidel, Hingahm, MA, pp 303–368

    Google Scholar 

  • Wolf RA, Spiro RW, Sazykin S, Toffoletto FR (2007) How the earth’s inner magnetosphere works: an evolving picture. J Atmos Solar-Terr Phys. http://doi:10.1016/j.jastp.2006.07.026

  • Wolf RA, Spiro RW, Voigt G-H, Reiff PH, Chen CK, Harel M (1982) Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. J Geophys Res 87:5949–5962

    Article  Google Scholar 

Download references

Acknowledgments

NM was supported by the National Science Foundation under Agreement Number ATM0720406, and NASA GSFC: LWS TRT NNX06AC68G and Guest Investigator C/NOFS program NNX09AN58G. AR and AM were supported in part by the NASA LWS program. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Maruyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maruyama, N. et al. (2011). Modeling the Storm Time Electrodynamics. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_35

Download citation

Publish with us

Policies and ethics