Skip to main content

Ionosphere Data Assimilation: Problems Associated with Missing Physics

  • Chapter
  • First Online:

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

Physics-based data assimilation models can be used for a wide range of applications in space physics, but as with all models the data assimilation models have limitations. The limitations can be associated with the data, the assimilation technique, or the background physics-based model. Here, we focused on the ionosphere and on elucidating the problems associated with missing physics in the background ionosphere model. The study was conducted with the Global Assimilation of Ionospheric Measurements-Gauss-Markov (GAIM-GM) physics-based data assimilation model. Simulations relevant to the low and middle latitude ionosphere were conducted in order to show how missing physics in the background ionosphere model affects the reconstructions. The low-latitude simulation involved the presence of equatorial plasma bubbles and a background physics-based ionosphere model that does not self-consistently describe bubbles. This problem, coupled with insufficient data, led to a Gauss-Markov reconstruction that contained a broad region of relatively low nighttime Total Electron Density (TEC) values instead of the individual plasma bubbles. The implications of plasma bubbles for reconstructions with the GAIM-FP (Full Physics) data assimilation model, where the electric fields and neutral winds are determined self-consistently, are noted. The mid-latitude simulation involved a Gauss-Markov ionosphere reconstruction for a geomagnetic storm where a Storm Enhanced Density (SED) appeared across the United States. Again, the background physics-based model (Ionosphere Forecast Model) could not produce the SED feature because this model does not take account of penetrating electric fields. Nevertheless, in this case there were sufficient data to overcome the deficiency in the background ionosphere model and the Gauss-Markov data assimilation reconstruction successfully described the SED feature and surrounding ionosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bust GS, Crowley G (2007) Tracking of polar cap ionospheric patches using data assimilation. J Geophys Res 112:A05307. doi:10.1029/2005JA011597

    Article  Google Scholar 

  • Decker DT, McNamara LF (2007) Validation of ionospheric weather predicted by global assimilation of ionospheric measurements (GAIM). Radio Sci 42:RS4017. doi:10.1029/2007RS003632

    Article  Google Scholar 

  • Foster JC et al (2005) Multiradar observations of the polar tongue of ionization. J Geophys Res 110:A09S31. doi:10.1029/2004JA010928

    Article  Google Scholar 

  • Hedin AE (1987) MSIS-86 Thermospheric Model. J Geophys Res 92:4649–4663

    Article  Google Scholar 

  • Heelis RA, Sojka JJ, David M, Schunk RW (2009) Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res 114(A3):A03315

    Article  Google Scholar 

  • Jee G, Burns AG, Wang W, Solomon SC, Schunk RW, Scherliess L, Thompson DC, Sojka JJ, Zhu L (2007) Duration of an ionospheric data assimilation initialization of a coupled thermosphere-ionosphere model. Space Weather 5:S01004. doi:10.1029/2006SW000250

    Article  Google Scholar 

  • Jee G, Burns AG, Wang W, Solomon SC, Schunk RW, Scherliess L, Thompson DC, Sojka JJ, Zhu L (2008) Driving the TING model with GAIM electron densities: ionospheric effects on the thermosphere. J Geophys Res 113:A03305. doi:10.1029/2007JA012580

    Article  Google Scholar 

  • Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ (2010) JPL/USC GAIM: On the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res 115:A02307. doi:10.1029/2009JA014420

    Article  Google Scholar 

  • McDonald SE, Su Basu, Basu S, Groves KM, Valladares CE, Scherliess L, Thompson DC, Schunk RW, Sojka JJ, Zhu L (2006) Extreme longitudinal variability of plasma structuring in the equatorial ionosphere on a magnetically quiet equinoctial day. Radio Sci 41:RS6S24. doi: 10.1029/2005RS003366

    Article  Google Scholar 

  • McNamara LF, Baker CR, Decker DT (2008) Accuracy of USU-GAIM specifications of foF2 and M(3000)F2 for a world-wide distribution of ionosonde locations. Radio Sci 43:RS1011. doi:10.1029/2007RS003754

    Article  Google Scholar 

  • McNamara LF, Decker DT, Welsh J, Cole DG (2007) Validation of the USU GAIM model predictions of the maximum usable frequency for a 3000 km circuit. Radio Sci 42:RS3015. doi:10.1029/2006RS003589

    Article  Google Scholar 

  • Scherliess L, Schunk RW, Sojka JJ, Thompson DC (2004) Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci 39:RS1S04. doi:10.1029/2002RS002797

    Article  Google Scholar 

  • Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L (2006) The USU GAIM Gauss-Markov Kalman filter model of the ionosphere: model description and validation. J Geophys Res 111:A11315. doi:10.1029/2006JA011712

    Article  Google Scholar 

  • Scherliess L, Thompson DC, Schunk RW (2009) Ionospheric dynamics and drivers obtained from a physics-based data assimilation model. Radio Sci 44:RS0A32. doi:10.1029/2008RS004068

    Article  Google Scholar 

  • Scherliess L, Thompson DC, Schunk RW (2010) Data assimilation models: a ‘new’ tool for ionospheric science and applications. In: Liu W, Fujimoto M (eds) The dynamic magnetosphere, IAGA. Springer, NY (in press)

    Google Scholar 

  • Schunk RW, Nagy AF (2009) Ionospheres, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schunk RW, Sojka JJ, Eccles JV (1997) Expanded capabilities for the ionospheric forecast model, Final Report, AFRL-VS-HA-TR-98-0001, 1–142

    Google Scholar 

  • Schunk RW et al (2004a) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39:RS1S02. doi:10.1029/2002RS002794

    Article  Google Scholar 

  • Schunk RW et al (2004b) USU Global ionospheric data assimilation models. Proc SPIE 5548:327–336. doi:10.1117/12.562448

    Article  Google Scholar 

  • Schunk RW et al (2005a) An operational data assimilation model of the global ionosphere. In: Goodman JM (ed) Proceedings of 2005 ionospheric effects symposium. JMG Associates Ltd, Alexandria, VA, pp 512–518

    Google Scholar 

  • Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Zhu L (2005b) Ionospheric weather forecasting on the horizon. Space Weather 3:S08007. doi:10.1029/2004SW000138

    Article  Google Scholar 

  • Sojka JJ, Thompson DC, Scherliess L, Schunk RW (2007) Assessing models for ionospheric weather specification over Australia during the 2004 CAWSES campaign. J Geophys Res 112:A09306. doi:10.1029/2006JA012048

    Article  Google Scholar 

  • Thompson DC, Scherliess L, Sojka JJ, Schunk RW (2006) The Utah State University Gauss-Markov Kalman filter in the ionosphere: the effect of slant TEC and electron density profile data on model fidelity. J Atmos Solar-Terr Phys 68:947–958

    Article  Google Scholar 

  • Thompson DC, Scherliess L, Sojka JJ, Schunk RW (2009) Plasmasphere and upper ionosphere contributions and corrections during the assimilation of GPS slant TEC. Radio Sci 44:RS0A02. doi:10.1029/2008RS004016

    Article  Google Scholar 

  • Zhu L et al (2006) Validation study of the ionosphere forecast model (IFM) using the TOPEX total electron content measurements. Radio Sci 41:RS5S11. doi:10.1029/2005RS003336

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Office of Naval Research grant N00014-09-1-0292 to Utah State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.W. Schunk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schunk, R., Scherliess, L., Thompson, D. (2011). Ionosphere Data Assimilation: Problems Associated with Missing Physics. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_33

Download citation

Publish with us

Policies and ethics