Skip to main content

Storm-Time Response of the Thermosphere–Ionosphere System

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

During a geomagnetic storm, the magnetospheric energy injected into the upper atmosphere increases by at least an order of magnitude, and during these times far exceeds the solar EUV and UV energy input. The energy is initially deposited towards higher latitudes where it heats and expands the thermosphere, increasing temperature and neutral density. Ionospheric plasma at high latitudes accelerates in response to the magnetospheric forcing, and through collisions can drive neutral winds in excess of 1 km/s. Large scale gravity waves are launched equatorward preceding a change in global circulation. Upwelling at high latitude and equatorward winds transport molecular rich neutral gas towards mid and low latitudes, particularly in the summer hemisphere, where it speeds up recombination and depletes the ionosphere. Additional electrodynamic processes , such as prompt penetration and disturbance dynamo electric fields, accompany the dynamic response to storms and can cause a huge redistribution and increase of ionospheric plasma. The papers following this one will elucidate many of the details in the storm-time response and provide a broader perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Basu S, Basu S, Groves KM, Yeh H-C, Su S-Y, Rich FJ, Sultan PJ, Keskinen MJ (2001) Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophys Res Lett 28(18):3577–3580

    Article  Google Scholar 

  • Basu S, Kudeki E, Basu S, Valladares CE, Weber EJ, Zengingonul HP, Bhattacharyya S, Sheehan R, Meriwether JW, Biondi MA, Kuenzler H, Espinoza J (1996) Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. J Geophys Res 101(A12):26795–26810

    Article  Google Scholar 

  • Batista IS, de Paula ER, Abdu MA, Trivedi NB, Greenspan ME (1991) Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes. J Geophys Res 96(A8):13943–13952

    Article  Google Scholar 

  • Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686

    Article  Google Scholar 

  • Buonsanto MJ (1999) Ionospheric storms – A review. Space Sci Rev 88:563–601

    Article  Google Scholar 

  • Burns AG, Killeen TL, Roble RG (1991) A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J Geophys Res 96(A8): 14153–14167

    Article  Google Scholar 

  • Coster AJ, Foster J, Erikson P (2003) Monitoring the ionosphere with GPS. Space Weather, GPS World 14(5):42–49

    Google Scholar 

  • Crowley G, Meier RR (2008) Disturbed O/N2 ratios and their transport to mid and low latitudes. In: Kintner PM, Coster AJ, Fuller-Rowell TJ, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitde ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. American Geophysical Union, Washington, DC, pp 221–234

    Google Scholar 

  • Crowley G, Schoendorf J, Roble R, Marcos F (1996) Cellular structures in the high-latitude thermosphere. J Geophys Res 101(A1):211–223

    Article  Google Scholar 

  • Emmert JT, Fejer BG, Fesen CG, Shepherd GG, Solheim BH (2001) Climatology of middle- and low-latitude daytime F- region disturbance neutral winds measured by Wind Imaging Interferometer (WINDII). J Geophys Res 106(A11): 24701–24712

    Article  Google Scholar 

  • Emmert JT, Fejer BG, Shepherd GG, Solheim BH (2002) Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDII. J Geophys Res. 107(A12):1453

    Google Scholar 

  • Evans DS, Fuller-Rowell TJ, Maeda S, Foster J (1988) Specification of the heat input to the thermosphere from magnetospheric processes using TIROS/NOAA auroral particle observations. Adv Astronautical Sci 65:1649–1668

    Google Scholar 

  • Fedrizzi M, Fuller-Rowell TJ, Codrescu MV (2011) Physics-based modeling of upper atmosphere neutral density. Space Weather (submitted)

    Google Scholar 

  • Fedrizzi M, Fuller-Rowell TJ, Maruyama N, Codrescu MV, Khalsa H (2008) Global modeling of storm-time thermospheric dynamics and electrodynamics. In: Kintner PM, Coster AJ, Fuller-Rowell TJ, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitde ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. American Geophysical Union, Washington, DC, pp 187–200

    Google Scholar 

  • Fejer BG, Emmert JT (2003) Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm. J Geophys Res 108(A12):1454

    Article  Google Scholar 

  • Fejer BG, Emmert JT, Sipler DP (2002) Climatology and storm time dependence of nighttime thermospheric neutral winds over Millstone Hill. J Geophys Res. doi:10.1029/2001JA000300

    Google Scholar 

  • Fejer BG, Kelley MC (1980) Ionospheric irregularities. Rev Geophys Space Phys 18:401

    Article  Google Scholar 

  • Fejer BG, Kelley MC, Senior C, de la Beaujardière O, Holt JA, Tepley CA, Burnside R, Abdu MA, Sobral JHA, Woodman RF, Kamide Y, Lepping R (1990) Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign. J Geophys Res 95(A3):2367–2378

    Article  Google Scholar 

  • Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial zonal electric fields. J Geophys Res 102(A11):24047–24056

    Article  Google Scholar 

  • Fejer BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104(A9):19859–19870

    Article  Google Scholar 

  • Fesen CG, Crowley G, Roble RG, Richmond AD, Fejer BG (2000) Simulations of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophys Res Lett 27: 1851–1854

    Article  Google Scholar 

  • Field P, Rishbeth H (1997) The response of the ionospheric F 2 layer to geomagnetic activity: An analysis of worldwide data. J Atmos Solar-Terr Phys 59:163–180

    Article  Google Scholar 

  • Forbes JM (2007) Dynamics of the thermosphere. J Met Soc Jpn 85B:193–213

    Article  Google Scholar 

  • Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X (2005) Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J Geophys Res. 107(A5):1052

    Google Scholar 

  • Foster JC, Erickson PJ, Coster AJ, Goldstein J, Rich FJ (2002) Ionospheric signatures of plasmaspheric tails. Geophys Res Lett. 29(13):1623

    Google Scholar 

  • Foster JC, Rideout W (2005) Midlatitude TEC enhancements during the October 2003 superstorm. Geophys Res Lett. 32:L12504

    Google Scholar 

  • Fuller-Rowell TJ (1995) Dynamics of the lower thermosphere. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere: a review of experiment and theory. Geophysical monograph series, vol 87. American Geophysical Union, Washington, DC, p 23

    Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99(A3):3893–3914

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Risbeth H, Moffett RJ, Quegan S (1996b) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101(A2):2343–2354

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Roble RG, Richmond AD (1997) How does the thermosphere and ionosphere react to a geomagnetic storm? In: Bruce BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms. Geophysical monograph series, vol 98. American Geophysical Union, Washington, DC, pp 203–225

    Google Scholar 

  • Fuller-Rowell TJ, Millward GH, Richmond AD, Codrescu MV (2002) Storm-time changes in the upper atmosphere at low latitudes. J Atmos Solar-Terr Phys 64:1383–1391

    Article  Google Scholar 

  • Fuller-Rowell TJ, Rees D (1984) Interpretation of an anticipated long-lived vortex in the lower thermosphere following simulation of an isolated substorm. Planet Space Sci 32:69–85

    Article  Google Scholar 

  • Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ, Codrescu MV, Millward GH (1996a) A coupled thermosphere ionosphere model (CTIM). In: Schunk RW (ed) Handbook of ionospheric models. STEP Report. Utah State University, Logan, pp 217–238

    Google Scholar 

  • Fuller-Rowell TJ, Richmond AD, Maruyama N (2008) Global modeling of storm-time thermospheric dynamics and electrodynamics. In: Kintner PM, Coster AJ, Fuller-Rowell TJ, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitde ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. American Geophysical Union, Washington, DC, pp 187–200

    Google Scholar 

  • Goldstein J, Burch JL, Sandel BR, Mende SB, Brandt PC, Hairston MR (2005) Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. J Geophys Res. 110:A03205

    Google Scholar 

  • Goldstein J, Sandel BR, Hairston MR, Reiff PH (2003) Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys Res Lett. 30(24):2243

    Google Scholar 

  • Greenspan ME, Rasmussen CE, Burke WJ, Abdu MA (1991) Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989. J Geophys Res 96(A8):13931–13942

    Article  Google Scholar 

  • Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, Valladares CE, Sheehan R, MacKenzie E, Secan JA, Ning P, McNeill WJ, Moonan DW, Kendra MJ (1997) Equatorial scintillation and systems support. Radio Sci 32(5):2047–2064

    Article  Google Scholar 

  • Heelis RA (2004) Electrodynamics in the low and middle latitude ionosphere: A tutorial. J Atmos Solar-Terr Phys 66:825–838

    Article  Google Scholar 

  • Heelis RA, Sojka JJ, David M, Schunk RW (2009) Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res. 140:A03315

    Google Scholar 

  • Huang C-S, Foster JC, Kelley MC (2005) Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res 110:A11309

    Article  Google Scholar 

  • Huba JD, Joyce G, Sazykin S, Wolf R, Spiro R (2005) Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys Res Lett. 32:L23101

    Google Scholar 

  • Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys 20:293–315

    Article  Google Scholar 

  • Kelley MC, Fejer BG, Gonzales CA (1979) An explanation of anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301

    Article  Google Scholar 

  • Killeen TL, Craven JD, Frank LA, Ponthieu J-J, Spencer NW, Heelis RA, Brace LH, Roble RG, Hays PB, Carignan GR (1988) On the relationship between dynamics of the polar thermosphere and morphology of the aurora: Global-scale observations from Dynamics Explorers 1 and 2. J Geophys Res 93(A4):2675–2692

    Article  Google Scholar 

  • Killeen TL, Hays PB, Carignan GR, Heelis RA, Hanson WB, Spencer NW, Brace LH (1984) Ion-neutral coupling in the high latitude F region: Evaluation of ion-neutral heating terms from the Dynamics Explorer 2. J Geophys Res 89:7495–7509

    Article  Google Scholar 

  • Kwak Y-S, Richmond AD (2007) An analysis of the momentum forcing in the high-latitude lower thermosphere. J Geophys Res. 112:A01306

    Google Scholar 

  • Lei J, Wang W, Burns AG, Solomon SC, Richmond AD, Wiltberger M, Goncharenko LP, Coster AJ, Reinisch BW (2008) Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J Geophys Res. 113:A01314

    Google Scholar 

  • Liu H, Lühr H (2005) Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res. 110:A09529

    Google Scholar 

  • Lu G, Goncharenko LP, Richmond AD, Roble RG, Aponte N (2008) A dayside ionospheric positive storm phase driven by neutral winds. J Geophys Res. 113:A08304

    Google Scholar 

  • Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms.” Geophys Res Lett. 32:L12S02

    Google Scholar 

  • Marsh DR, Solomon SC, Reynolds AE (2004) Empirical model of nitric oxide in the lower thermosphere. J Geophys Res. 109:A07301

    Google Scholar 

  • Maruyama N, Richmond AD, Fuller-Rowell TJ, Codrescu MV, Sazykin S, Toffoletto FR, Spiro RW, Millward GH (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time ionosphere. Geophys Res Lett. 32:L17105

    Google Scholar 

  • Maruyama N, Sazykin S, Spiro RW, Fejer BG, Wolf R, Anderson DN, Anghel A, Toffoletto FR, Fuller-Rowell TJ, Codrescu MV, Richmond AD, Millward GH (2007) Modeling storm-time electrodynamics of the low-latitude ionosphere-thermosphere system: Can long lasting disturbance electric fields be accounted for? J Atmos Solar-Terr Phys 69:1182–1199

    Article  Google Scholar 

  • Mendillo M, Papagiannis MD, Klobuchar JA (1970) Ionospheric storms at midlatitudes. Radio Sci 5:895–898

    Article  Google Scholar 

  • Millward GH, Moffett RJ, Quegan S, Fuller-Rowell TJ (1996) A coupled thermosphere ionosphere plasmasphere model (CTIP). In: Schunk RW (ed) Handbook of ionospheric models. STEP Report. Utah State University, Logan, pp 239–279

    Google Scholar 

  • Millward GH, Müller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24733–24744

    Article  Google Scholar 

  • Paxton LJ, Christensen AB, Humm DC, Ogorzalek BS, Pardoe CT, Morrison D, Weiss MB, Crain W, Lew PH, Mabry DJ, Goldstein JO, Gary SA, Persons DF, Harold MJ, Alvarez EB, Ercol CJ, Strickland DJ, Meng C-I (1999) Global ultraviolet imager (GUVI): Measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. In: Larer MA (ed) SPIE optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol 3756. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, pp 265–276

    Google Scholar 

  • Prölss GW (1997) Magnetic storm associated perturbations of the upper atmosphere. In: Bruce BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms. Geophysical monograph series, vol 98. American Geophysical Union, Washington, DC, pp 227–241

    Google Scholar 

  • Richmond AD (1995) Ionospheric electrodynamics. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol II. CRC Press, Boca Raton, FL, pp 249–290

    Google Scholar 

  • Richmond AD, Matsushita S (1975) Thermospheric response to a magnetic substorm. J Geophys Res 80(19):2839–2850

    Article  Google Scholar 

  • Richmond AD, Roble RG (1987) Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model. J Geophys Res 92:12365–12376

    Article  Google Scholar 

  • Rishbeth H, Fuller-Rowell TJ, Rees D (1987) Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: A computational study. Planet Space Sci 35:1157–1165

    Article  Google Scholar 

  • Roble RG (1977) The upper atmosphere and magnetosphere. National Academy of Science, Washington, DC

    Google Scholar 

  • Rodger AS, Wrenn GL, Rishbeth H (1989) Geomagnetic storms in the Antarctic F region, II, Physical interpretation. J Atmos Solar-Terr Phys 51:851–866

    Article  Google Scholar 

  • Sazykin S, Spiro RW, Wolf RA, Toffoletto FR, Tsyganenko N, Goldstein J, Hairston M (2005) Modeling inner magnetospheric electric fields: Latest self-consistent results. In: Pulkkinen TI, Tsyganenko NA, Friedel RHW (eds) The inner magnetosphere: physics and modeling. Geophysical monograph series, vol 115. American Geophysical Union, Washington, DC, pp 263–269

    Google Scholar 

  • Scherliess L, Fejer BG (1997) Storm time dependence of equatorial disturbance dynamo zonal electric fields. J Geophys Res 102(A11):24037–24046

    Article  Google Scholar 

  • Schunk R, Raitt W, Banks P (1975) Effect of electric fields on the daytime high-latitude E and F regions. J Geophys Res 80(22):3121–3130

    Article  Google Scholar 

  • Shiokawa K, Otsuka Y, Ogawa T, Balan N, Igarashi K, Ridley AJ, Knipp DJ, Saito A, Yumoto K (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res. 107(A6):1088

    Google Scholar 

  • Skoblin MG, Förster M (1993) An alternative explanation of ionization depletions in the winter night-time storm perturbed F 2 layer. Ann Geophys 11:1026–1032

    Google Scholar 

  • Spiro RW, Wolf RA, Fejer BG (1988) Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984. Ann Geophys 6:39–50

    Google Scholar 

  • Strickland DJ, Daniell RE, Craven JD (2001) Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981. J Geophys Res 106(A10):21049–21062

    Article  Google Scholar 

  • Sutton EK, Forbes JM, Nerem RS (2005) Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res. 110:A09540

    Google Scholar 

  • Weimer DR (2005) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res. 110:A05306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Fuller-Rowell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fuller-Rowell, T.J. (2011). Storm-Time Response of the Thermosphere–Ionosphere System. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_32

Download citation

Publish with us

Policies and ethics