Skip to main content

The Energy Finite Element Method NoiseFEM

  • Conference paper

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 27))

Abstract

The most costly part in the prediction of structure borne sound for a complex vehicle such as a ship lies in the build-up of the analysis model. Since often a finite element model is available from other structural mechanical analyses, NoiseFEM, the approach described in this paper, uses such a model as a starting point for an energy flow analysis. The methodology focuses on stiffened shell structures and combines ideas from diffusive energy propagation methods and statistical energy analysis. Modifications are introduced to simplify the direct re-use of finite element models. Since 1997, NoiseFEM has been applied and validated in numerous shipbuilding projects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belov, V.D., Rybak, S.A., Tartakovskii, B.D.: Propagation of vibrational energy in absorbing structures. Sov. Phys. Acoust. 23(2), 115–119 (1977)

    Google Scholar 

  2. Bernhard, R.J.: The family of EFA equations and their relationship to SEA. In: Proceedings of NOVEM. Lyon (2000)

    Google Scholar 

  3. Bouthier, O.M., Bernhard, R.J.: Simple Models of the Energetics of Transversely Vibrating Plates. Journal of Sound and Vibration 182(1), 149–164 (1995)

    Article  Google Scholar 

  4. Cabos, C., Asmussen, I.: Integrating global strength, vibration and noise analyses for ships using one computational model. In: H. Mang, F. Rammerstorfer, J. Eberhardsteiner (eds.) Fifth World Congress on Computational Mechanics. Vienna (2002)

    Google Scholar 

  5. Cabos, C., Jokat, J.: Computation of structure-borne noise propagation in ship structures using Noise-FEM. In: O. Tan (ed.) Practical Design of Ships and Mobile Units, pp. 927–934. Elsevier (1998)

    Google Scholar 

  6. Cabos, C., Matthies, H.G.: A method for the prediction of structure-borne noise propagation in ships. In: Proceedings of the 6th international congress on sound and vibration, pp. 2349–2356. Technical University of Denmark (1999)

    Google Scholar 

  7. Cabos, C., Matthies, H.G.: Prediction of Sound Propagation in Stiffened Shell Structures with an Energy Finite Element Method. In: Proceedings of the 17th International Congress on Acoustics. Rome (2001)

    Google Scholar 

  8. Cabos, C., Worms, C., Jokat, J.: Application of an Energy Finite Element Method to the Prediction of Structure Borne Sound Propagation in Ships. In: Proceedings of Internoise. The Hague (2001)

    Google Scholar 

  9. Carcaterra, A., Sestieri, A.: Energy Density Equations and Power Flow in Structures. Journal of Sound and Vibration 188(2), 269–282 (1995)

    Article  Google Scholar 

  10. Craik, R.J.M., Bosmans, I., Cabos, C., Heron, K.H., Sarradj, E., Steel, J.A., Vermeir, G.: Structural transmission at line junctions: a benchmarking exercise. Journal of Sound and Vibration 272, 1086–1096 (2004)

    Article  Google Scholar 

  11. Flehmke, A., Jesse, A., Jokat, J., Schellin, T.E.: Hydrodynamics, structural optimization and noise control of a fast monohull ferry design. In: FAST. Sydney (1997)

    Google Scholar 

  12. Heckl, M.: Structure-borne Sound Propagation on Beams with Many Discontinuities. Acustica 81(5), 439–449 (1995)

    MATH  Google Scholar 

  13. Hynnä, P., Klinge, P., Vuoksinen, J.: Prediction of structure-borne sound transmission in large welded ship structures using SEA. Journal of sound and vibration 180(4), 583–607 (1995)

    Article  Google Scholar 

  14. Ichchou, M.N., Jezequel, L.: Comments on simple models of the energy flow in vibrating membranes and on simple models of the energetics of transversely vibrating plates. Journal of Sound and Vibration 195(4), 679–685 (1996)

    Article  Google Scholar 

  15. Iino, K., Honda, I.: Total Noise Prediction System for a Passenger Cruise Ship. In: 5th International Symposium on Practical Design of Ships and Mobile Units, pp. 1648–1661. Newcastle (1992)

    Google Scholar 

  16. Irie, Y., Nakamura, T.: Prediction of Structure Borne Sound Transmission Using Statistical Energy Analysis. Bulletin of the M.E.S.J. 13(2), 60–72 (1984)

    Google Scholar 

  17. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994)

    Google Scholar 

  18. Ladevèze, P., Chevreuil, M.: A new computational method for transient dynamics including the low- and the medium-frequency ranges. Int J. for Numerical Methods in Engineering 64(4), 503–527 (2005)

    Article  MATH  Google Scholar 

  19. Langley, R.S.: On the Vibrational Conductivity Approach to High Frequency Dynamics for Two-Dimensional Structural Components. Journal of Sound and Vibration 182(4), 637–657 (1995)

    Article  MathSciNet  Google Scholar 

  20. Langley, R.S., Heron, K.H.: Elastic wave transmission through plate/beam junctions. Journal of sound and vibration 143(2), 241–253 (1990)

    Article  Google Scholar 

  21. Lyon, R.H., DeJong, R.G.: Theory and Applications of Statistical Energy Analysis. Butterworth Heinemann, Boston, Massachusetts (1995)

    Google Scholar 

  22. Moens, I., Vandepitte, D., Sas, P.: Vibro-acoustic Energy Flow Models Implemented by Finite Elements. In: Proceedings of ISMA 23 (1998)

    Google Scholar 

  23. Nefske, D.J., Sung, S.H.: Power Flow Finite Element Analysis of Dynamic Systems: Basic Theory and Application to Beams. Transactions of the ASME Journal of Vibration Acoustics Stress, and Reliability in Design 111, 94–100 (1989)

    Google Scholar 

  24. Nishino, H., Ohlrich, M.: Application of Wave Intensity Analysis for Predicting Mid-Frequency Vibration Transmission in Extended Plate Structures. In: Proceedings of Internoise. Den Haag (2001)

    Google Scholar 

  25. Plunt, J.: Methods for predicting noise levels in ships. Parts 1 and 2. Ph.D. thesis, Chalmers University of Technology, Göteborg (1980)

    Google Scholar 

  26. Riou, H., Ladevèze, P., Rouch, P.: Extension of the variational theory of complex rays to shells for medium-frequency vibrations. J. of Sound and Vibration 272, 341–360 (2004)

    Article  Google Scholar 

  27. Riou, H., Ladevèze, P., Sourcis, B.: The multiscale VTCR approach applied to acoustics problems. J. of Computational Acoustics 16(4), 487–505 (2008)

    Article  Google Scholar 

  28. Sarradj, E.: The uncertain relationship between transmission coefficient and coupling loss factor. In: Proceedings of NOVEM. Lyon (2000)

    Google Scholar 

  29. Vlahopoulos, N., Garza-Rios, L.O., Mollo, C.: Numerical Implementation, Validation, and Marine Applications of an Energy Finite Element Formulation. Journal of Ship Research 43(3), 143–156 (1999)

    Google Scholar 

  30. Wilken, M., Cabos, C., Semrau, S., Worms, C., Jokat, J.: Prediction and Measurement of Structure-borne Sound Propagation in a Full Scale Deckhouse-Mock-up. In: 9th International Symposium of Practical Design of Ships and other Floating Structures, pp. 653–659. Lübeck (2004)

    Google Scholar 

  31. Yoshikai, T., Hattori, K., Sato, T., Tashiro, S., Takahashi, K., Koshino, T.: Noise Prediction Program on Board Ships. J. S. N. A. Japan 150, 158–173 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Cabos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Cabos, C., Matthies, H.G. (2011). The Energy Finite Element Method NoiseFEM. In: Belyaev, A., Langley, R. (eds) IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties. IUTAM Bookseries, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0289-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0289-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0288-2

  • Online ISBN: 978-94-007-0289-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics