Skip to main content

What Do We Know About Surface Charges on Cracks in Ferroelectric Ceramics?

  • Conference paper
  • First Online:
IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 24))

Abstract

The present work investigates the static and time dependent electric potential distribution around cracks in a poled ferroelectric ceramic by Kelvin Probe Force Microscopy (KFM). In a first step a Vickers indentation crack in poled lead zirconate titanate (PZT) was subjected to static electric fields of up to 500V/mm in poling direction, and the potential distribution around the crack was measured. In a second step, the polarity of the applied voltage was reversed against the poling direction during the measurement of the potential. Using a simple model, an effective dielectric constant of the crack, as well as the surface charge density on the crack face were calculated as a function of the distance from the crack tip, the applied field and the time. The results are discussed with reference to free charges on the crack surface, electrically induced domain switching at the crack tip and crack bridging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balke H, Kemmer G, Drescher J (1997) Some remarks on the fracture mechanics of piezoelectric solids. MicroMaterials Conference “MicroMat 1997”, pp 398–401

    Google Scholar 

  2. Hao TH, Shen ZY (1994) A new electric boundary-condition of electric fracture-mechanics and its applications. Eng Fract Mech 47(6):793–802

    Article  Google Scholar 

  3. McMeeking RM (2004) The energy release rate for a Griffith crack in a piezoelectric material. Eng Fract Mech 71(7–8):1149–1163

    Article  Google Scholar 

  4. Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41(22–23):6291–6315

    Article  MATH  Google Scholar 

  5. Landis CM (2005) Energetically consistent boundary conditions for electromechanical fracture (Erratum, vol 41, pg 6291, 2004). Int J Solids Struct 42(8):2461–2463

    Article  MATH  Google Scholar 

  6. Li WY, McMeeking RM, Landis CM (2008) On the crack face boundary conditions in electromechanical fracture and an experimental protocol for determining energy release rates. Eur J Mech A-Solids 27(3):285–301

    Article  MATH  Google Scholar 

  7. Jelitto H, Felten F, Swain MV, Balke H, Schneider GA (2007) Measurement of the total energy release rate for cracks in PZT under combined mechanical and electrical loading. J Appl Mech-Trans ASME 74(6):1197–1211

    Article  Google Scholar 

  8. Jelitto H, Felten F, Hausler C, Kessler H, Balke H, Schneider GA (2005) Measurement of energy release rates for cracks in PZT under electromechanical loads. J Eur Ceram Soc 25(12):2817–2820

    Article  Google Scholar 

  9. Jelitto H, Kessler H, Schneider GA, Balke H (2005) Fracture behavior of poled piezoelectric PZT under mechanical and electrical loads. J Eur Ceram Soc 25(5):749–757

    Article  Google Scholar 

  10. Häusler C, Jelitto H, Neumeister P, Balke H, Schneider GA (2009) Interfacial fracture of piezoelectric multilayer actuators under mechanical and electrical loading. Int J Fract 160(1):43–54

    Article  Google Scholar 

  11. Haug A, McMeeking RM (2006) Cracks with surface charge in poled ferroelectrics. Eur J Mech A-Solids 25(1):24–41

    Article  MATH  Google Scholar 

  12. Schneider GA, Felten F, McMeeking RM (2003) The electrical potential difference across cracks in PZT measured by Kelvin Probe Microscopy and the implications for fracture. Acta Mater 51(8):2235–2241

    Article  Google Scholar 

  13. Felten F (2006) PhD thesis: Anwendung der Rastersondenmikroskopie zur Bestimmung bruchmechanischer Parameter und lokaler piezoelektrischer Eigenschaften von Ferroelektrika. Book series: Berichte aus der Materialwissenschaft, Shaker Verlag,Aachen

    Google Scholar 

  14. Kalinin SV, Bonnell DA (2001) Local potential and polarization screening on ferroelectric surfaces. Phys Rev B 63(12):125411

    Article  Google Scholar 

  15. Jacobs HO, Leuchtmann P, Homan OJ, Stemmer A (1998) Resolution and contrast in Kelvin probe force microscopy. J Appl Phys 84(3):1168–1173

    Article  Google Scholar 

  16. Johnson Matthey (2009) Piezoceramic Masses. Online available from: http://ect.jmcatalysts.com/ or http://www.piezoproducts.com/de/

  17. Lawn BR (1993) Fracture of brittle solids. book series: Cambridge solid state science series, 2 edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We thank Rodrigo Pacher Fernandez and Claudia Neusel for the measurement of the electrical conductivity of PZT and the DFG (German Science Foundation) for supporting this project under the grant number SCHN 372/12-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerold A. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Engert, A.R., Felten, F., Jelitto, H., Schneider, G.A. (2011). What Do We Know About Surface Charges on Cracks in Ferroelectric Ceramics?. In: Kuna, M., Ricoeur, A. (eds) IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials. IUTAM Bookseries, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9887-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9887-0_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9886-3

  • Online ISBN: 978-90-481-9887-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics