Skip to main content

Evolution and Function of Endogenous Termite Cellulases

  • Chapter
  • First Online:
Biology of Termites: a Modern Synthesis

Abstract

In the past decade, a century of debate over whether termites produce their own cellulases has been resolved by the application of molecular genetic techniques. Cellulase genes were present in ancient bilaterian animals, and have been passed down to termites and many other invertebrate lineages over several hundred million years. Termites contain multiple endoglucanase gene copies, all of which come from glycosyl hydrolase family 9, but the roles of the different gene copies are not yet clear. Enzyme assays and RNAi experiments indicate that endogenous cellulases play a key role in termite metabolism. The overall contribution of these enzymes in members of the Termitidae (which lack cellulolytic flagellates) appears to be greater than in members of other families. A major shift in the site of expression of endoglucanases and β-glucosidases from the salivary glands to the midgut has occurred in some members of the speciose family Termitidae. Investigations into the roles of different members of the termite colony in digesting cellulose have begun, and have revealed major variations in the level of expression, including differences between different sized workers. In fungus-growers and soil-feeders, endogenous cellulases appear to be of relatively minor importance, but have nonetheless been retained in the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557

    Article  PubMed  CAS  Google Scholar 

  • Béguin P, Aubert J (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58

    Article  PubMed  Google Scholar 

  • Biedermann W, Moritz P (1898) Beiträge zur vergeleichenden Physiologie der Verdauung. II. Uver ein celluloselödendes Enzyme im Leversecret der Schnecke (Helix pomatia). Pflüdg Arch Gem 73:219–287

    Article  CAS  Google Scholar 

  • Boyle PJ, Mitchell R (1978) Absence of microorganisms in crustacean digestive tracts. Science 200:1157–1159

    Article  PubMed  CAS  Google Scholar 

  • Buscalioni L, Comes S (1910) La digestione delle membrane vegatali per opera dei conternuti nell ‘intestina dei termitidi e il problema, della simbiosi’. Atti Accad Gioenia Sci Nat Catania 3:1–16

    Google Scholar 

  • Cleveland LR (1923) Symbiosis between termites and their intestinal protozoa. Proc Natl Acad Sci U S A 9:424–428

    Article  PubMed  CAS  Google Scholar 

  • Cleveland LR, Hall SR, Saunders EP, Collier J (1934) The wood-feeding roach Cryptocercus, its protozoa, and the symbiosis between protozoa and roach. Mem Am Acad Sci 17:185–342

    Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859

    Article  PubMed  CAS  Google Scholar 

  • Davison A, Blaxter M (2005) Ancient origin of glycosyl hydrolase family 9 cellulase genes. Mol Biol Evol 22:1273–1284

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Esenther GR, Kirk TK (1974) Catabolism of aspen sapwood in Reticulitermes flavipes. Ann Entomol Soc Am 67:989–991

    CAS  Google Scholar 

  • Fujita A, Hojo M, Aoyagi T et al (2010) Details of the digestive system in the midgut of Coptotermes formosanus Shiraki. J Wood Sci 56:222–226

    Google Scholar 

  • Fujita A, Miura T, Matsumoto T (2008) Differences in cellulose digestive systems among castes in two termite lineages. Physiol Entomol 33:73–82

    Article  CAS  Google Scholar 

  • Fujita A, Shimizu I, Abe T (2001) Distribution of lysozyme and protease, and amino acid concentration in the guts of a wood-feeding termite, Reticulitermes speratus (Kolbe): possible digestion of symbiont bacteria transferred by trophallaxis. Physiol Entomol 26:116–123

    Article  CAS  Google Scholar 

  • Grassi B, Sandias A (1893) The constitution and development of the society of termites: observations on their habits; with appendices on the parasitic protozoa of Termitidae, and on the Embiidae. Q J Microsc Sci 39:245–322

    Google Scholar 

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  PubMed  CAS  Google Scholar 

  • Hungate RE (1947) Studies on cellulose fermentation: III. The culture and isolation for cellulose-decomposing bacteria from the rumen of cattle. J Bacteriol 53:631–645

    PubMed  CAS  Google Scholar 

  • Imms AD (1920) On the structure and biology of Archotermopsis, together with descriptions of new species of intestinal protozoa, and general observations on the Isoptera. Phil Trans R Soc Lond B 209:75–180

    Article  Google Scholar 

  • Lamberty M, Zachary D, Lanot R et al (2001) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Lasker R, Giese AC (1956) Cellulose digestion in the silverfish Ctenolepisma lineata. J Exp Biol 33:542–553

    CAS  Google Scholar 

  • Leidy J (1881) The parasites of the termites. J Acad Nat Sci Philadelphia III 8:425–447

    Google Scholar 

  • Li L, Frohlich J, Pfeiffer P, Konig H (2003) Termite gut symbiotic archaezoa are becoming living metabolic fossils. Eukaryot Cell 2:1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Tokuda G, Watanabe H et al (2000) Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Curr Biol 10:801–804

    Article  PubMed  CAS  Google Scholar 

  • Lo N, Watanabe H, Sugimura M (2003) Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proc R Soc Lond B 270:S69–S72

    Article  CAS  Google Scholar 

  • Martin MM (1982) The role of ingested enzymes in the digestive processes of insects. In: Anderson JM, Rayner ADM, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge University Press, Cambridge, pp 155–172

    Google Scholar 

  • Martin MM (1991) The evolution of cellulose digestion in insects. Phil Trans R Soc Lond B 333:281–288

    Article  Google Scholar 

  • Martin MM, Martin JS (1978) Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: the role of acquired digestive enzymes. Science 199:1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K, Yashiro T, Shimizu K et al (2009) Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Curr Biol 19:30–36

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H et al (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    Article  PubMed  CAS  Google Scholar 

  • Qiu-Ying H, Wei-Ping W, Rang-Yu M, Chao-Liang L (2008) Studies on feeding and trophallaxis in the subterranean termite Odontotermes formosanus using rubidium chloride. Entomol Exp Appl 129:210–215

    Article  Google Scholar 

  • Ray DL, Julian JR (1952) Occurrence of cellulase in Limnoria. Nature 169:32–33

    Article  PubMed  CAS  Google Scholar 

  • Reinhard J, Kaib M (2001a) Food exploitation in termites: indication for a general feeding stimulating signal in labial gland secretion of Isoptera. J Chem Ecol 27:189–201

    Article  PubMed  CAS  Google Scholar 

  • Reinhard J, Kaib M (2001b) Thin-layer chromatography assessing feeding stimulation by labial gland secretion compared to synthetic chemicals in the subterranean termite Reticulitermes santonensis. J Chem Ecol 27:175–187

    Article  PubMed  CAS  Google Scholar 

  • Richmond PA (1991) Occurrence and functions of native cellulose. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker Inc, New York, NY, pp 5–24

    Google Scholar 

  • Sakon J, Irwin D, Wilson DB, Karplus PA (1997) Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol 4:810–818

    Article  PubMed  CAS  Google Scholar 

  • Scharf ME, Wu-Scharf D, Zhou X et al (2005) Gene expression profiles among immature and adult reproductive castes of the termite Reticulitermes flavipes. Insect Mol Biol 14:31–44

    Article  PubMed  CAS  Google Scholar 

  • Schulz MW, Slaytor M, Hogan ME, O’Brien RW (1986) Components of cellulase from the higher termite, Nasutitermes walkeri. Insect Biochem 16:929–932

    Article  CAS  Google Scholar 

  • Scrivener AM, Slaytor M (1994) Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-β-1,4-glucanase components. Insect Biochem Mol Biol 24:223–231

    Article  CAS  Google Scholar 

  • Scrivener AM, Slaytor M, Rose HA (1989) Symbiont-independent digestion of cellulose and starch in Panesthia cribrata Saussure, an Australian wood-eating cockroach. J Insect Physiol 35:935–941

    Article  Google Scholar 

  • Slaytor M (1992) Cellulose digestion in termites and cockroaches: what role do symbionts play? Comp Biochem Physiol 103B:775–784

    CAS  Google Scholar 

  • Smant G, Stokkermans J, Yan YT et al (1998) Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95:4906–4911

    Article  PubMed  CAS  Google Scholar 

  • Sugio K, Simojo K, Isozaki J et al (2006) Distribution of cellulase activities in the salivary glands and the guts of pseudoworkers and soldiers of the drywood-feeding termite Neotermes koshunensis (Shiraki) and the effect of defaunation. Jpn J Appl Entomol Zool 50:1–6

    Article  CAS  Google Scholar 

  • Suzuki K, Ojima T, Nishita K (2003) Purification and cDNA cloning of a cellulase from abalone Haliotis discus hannai. Eur J Biochem 270:771–778

    Article  PubMed  CAS  Google Scholar 

  • Tamaru Y, Karita S, Ibrahim A et al (2000) A large gene cluster for the Clostridium cellulovorans cellulosome. J Bacteriol 182:5906–5910

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H et al (1999) Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447:146–159

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H et al (2004) Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol Ecol 13:3219–3228

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Lo N, Watanabe H (2005) Marked variations in patterns of cellulase activity against crystalline- versus carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol Entomol 30:372–380

    CAS  Google Scholar 

  • Tokuda G, Miyagi M, Makiya H et al (2009) Digestive β-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression. Insect Biochem Mol Biol 39:931–937

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Saito H, Watanabe H (2002) A digestive beta-glucosidase from the salivary glands of the termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA by 5- and 3-RACE amplifications with degenerate primers. Insect Biochem Mol Biol 32:1681–1689

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Watanabe H, Matsumoto T, Noda H (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-glucanase. Zool Sci 14:83–93

    Article  PubMed  CAS  Google Scholar 

  • Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Micro Physiol 37:1–81

    Article  CAS  Google Scholar 

  • Watanabe H, Nakamura M, Tokuda G et al (1997) Site of secretion and properties of endogenous endo-beta-1,4-glucanase components from Reticulitermes speratus (Kolbe), a Japanese subterranean termite. Insect Biochem Mol Biol 27:305–313

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Noda H, Tokuda G, Lo N (1998) A cellulase gene of termite origin. Nature 394:330–331

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Takase A, Tokuda G et al (2006) Symbiotic ‘Archaezoa’ of the primitive termite Mastotermes darwiniensis still play a role in cellulase production. Eukaryot Cell 5:1571–1576

    Article  PubMed  CAS  Google Scholar 

  • Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Annu Rev Entomol 55:609–632

    Article  PubMed  CAS  Google Scholar 

  • Wood TG (1978) Feed and feeding habits of termites. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, New York, NY, pp 55–80

    Google Scholar 

  • Yokoe Y (1964) Cellulose activity in the termite, Leucotermes speratus, with new evidence in support of a cellulase produced by the termite itself. Sci Pap Coll Gen Educ Univ Tokyo 14:115–120

    Google Scholar 

  • Yokoe Y, Yasumasu I (1964) The distribution of cellulase in invertebrates. Comp Biochem Physiol 13:323–328

    Article  PubMed  CAS  Google Scholar 

  • Yuki M, Moriya S, Inoue T, Kudo T (2008) Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zool Sci 25:401–406

    Article  PubMed  CAS  Google Scholar 

  • Zachary A, Colwell RR (1979) Gut-associated microflora of Limnoria tripunctata in marine creosote-treated wood pilings. Nature 282:716–717

    Article  Google Scholar 

  • Zhou X, Wheeler MM, Oi FM, Scharf ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38:805–815

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Lo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Lo, N., Tokuda, G., Watanabe, H. (2010). Evolution and Function of Endogenous Termite Cellulases. In: Bignell, D., Roisin, Y., Lo, N. (eds) Biology of Termites: a Modern Synthesis. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3977-4_3

Download citation

Publish with us

Policies and ethics