Skip to main content

Sonochemical Degradation of Phenol in the Presence of Inorganic Catalytic Materials

  • Chapter
  • First Online:
Book cover Theoretical and Experimental Sonochemistry Involving Inorganic Systems

Abstract

Degradation of phenol in its aqueous solutions, using various techniques, including ultrasound, have been examined and discussed to better understand the mechanisms involved therein and the advantages as well as the disadvantages associated with the use of inorganic catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Kaur S and Singh V (2007) Visible light induced sonophotocatalytic degradation of reactive Red dye 198 using dye sensitized TiO2. Ultrason Sonochem 14: 531–537. (b) Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Salavati H (2008) Sonochemical and visible light induced photochemical and sonophotochemical degradation of dyes catalyzed by recoverable vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles. Ultrason Sonochem 15(5):815–822. (c) Song Y-L, Li J-T (2009) Degradation of C.I. Direct Black 168 from aqueous solution by fly ash/H2O2 combining ultrasound. Ultrason Sonochem 16(4):440–444

    Google Scholar 

  2. (a) Zourab SM, Ezzo EM, El-Aila HJ, Salem JKJ (2005) Study of kinetics of oxidation of amines by potassium ferricyanide in the presence of N,N-dimethyldodecylamine N-oxide. J Surfactants Detergents 8(1) 83–89. (b) Calza P, Pelizzetti E (2001) Photocatalytic transformation of organic compounds in the presence of inorganic ions. Pure Appl Chem 73(12): 1839. (c) Kado Y, Atobe M and Nonaka T (2001) Ultrasonic effects on electroorganic processes – Part 20. Photocatalytic oxidation of aliphatic alcohols in aqueous suspension of TiO2 powder. Ultrason Sonochem 8(2):69

    Google Scholar 

  3. (a) Kim T-K, Kim M-K, Lim Y-J, Son Y-A (2005) Degradation of the disazo acid dye by the sulfur-containing amino acids of wool fibers. Dyes Pigments 67(2): 127–132. (b) Knoevenagel K, Himmelreich R (1976) Degradation of compounds containing carbon atoms by photooxidation in the presence of water. Arch Environ Contamin. Toxicol 4(1): 324–333. (c) Park S-H, Wei S, Mizaikoff B, Taylor AE, Favero C, and Huang C-H (2009) Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors. Environ Sci Technol 43 (5):1360–1366

    Google Scholar 

  4. Gardner W, Cooke EI, Cooke RWI (1978) Handbook of chemical synonyms and trade names. CRC Press, Boca Raton, FL

    Google Scholar 

  5. Budavari S, O’Neil MJ, Smith A, Heckelmen PE (1989) The Merck index. Merck, Whitehouse station, NJ, p 1150

    Google Scholar 

  6. HSDB (1998) Hazardous substances data bank. National Library of Medicine, National Toxicology Information Program, Bethesda, MD

    Google Scholar 

  7. Lide DR (1993) CRC handbook of chemistry and physics. CRC Press, Boca Raton, FL

    Google Scholar 

  8. Amoore JE, Hautala E (1983) Odors as an aid to chemical safety: odor threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. Appl Toxicol 3:272–290

    Article  CAS  Google Scholar 

  9. Baker EL, Landrigan PJ, Bertozzi PE, Field PH, Basteyns BJ, Skinner HG (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33:89–94

    CAS  Google Scholar 

  10. Swarts M, Verhage NF, Field J, Wijn Berg J (1998) Trichlorinated phenols from Hypholoma elongatum. Phytochemistry 49(1):203–206

    Article  CAS  Google Scholar 

  11. Kidak R, Ince NH (2006) Ultrasonic destruction of phenol and substituted phenols: a review of current research. Ultrason Sonochem 13:195–199

    Article  CAS  Google Scholar 

  12. Wu Z-L, Dondruschka B, Cravotto G (2008) Degradation of phenol under combined irradiation of microwaves and ultrasound. Environ Sci Technol 42:8083–8087

    Article  CAS  Google Scholar 

  13. Meister JJ (ed) (2000) Polymer modification: principles techniques and applications. CRC Press, 936

    Google Scholar 

  14. Alnaizy R, Akgerman A (2000) Advanced oxidation of phenolic compounds. Adv Environ Res 4(3):233–244

    Article  Google Scholar 

  15. Lurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322

    Article  CAS  Google Scholar 

  16. Bu Davari S (2001) The Merck index, 13th edn. Merck, Whitehouse station, NJ, pp 1299–1367

    Google Scholar 

  17. Idris A, Saed K (2002) A precursor for nylon 6 and other manmade fibres. Global Nest Int J 4(2–3):139–144

    Google Scholar 

  18. Leonardo SA, Rocha-Filho RC, Bocchi N, Biaggio SR, Garcia-Garcia JIV, Montiel V (2008) Degradation of phenol using Co- and Co, F-doped PbO2 anodes in electrochemical filter-press cells. J Hazordous Mater 153:252–260

    Article  CAS  Google Scholar 

  19. Saravanan P, Pakshirajan K, Saha P (2009) Degradation of phenol by TiO2-based heterogeneous photocatalysts in presence of sunlight. J Hydroenviron Res 3:45–50

    Article  Google Scholar 

  20. International Programme on Chemical Safety (IPCS) (1994) Environmental Health Criteria 161. Phenol. World Health Organisation, Geneva

    Google Scholar 

  21. International Programme on Chemical Safety (IPCS) (1994) Phenol. Health and safety guide no 88. WHO, Geneva

    Google Scholar 

  22. Chaliha S, Bhattacharyya KG (2008) Using Mn(II) – MCM41 as an environment – friendly catalyst to oxidize phenol, 2-chlorophenol and 2-nitrophenol in aqueous solution. Ind Eng Chem Res 47:1370–1379

    Article  CAS  Google Scholar 

  23. Klibanov AM (1982) Enzymatic removal of hazardous pollutants from industrial aqueous effluents. Enzym Eng 6:319–323

    CAS  Google Scholar 

  24. Del Fino F, Dube D (1976) Persistent contamination of ground water by phenol. J Environ Sci Health 43:345

    Google Scholar 

  25. Jordan W, van Barneveld H, Gerlich O, Kleine-Boymann M, Ullrich J (2002) Phenol in: Ullmann’s encyclopedia of industrial chemistry. Weinheim, Wiley-VCH Verlag

    Google Scholar 

  26. Shailubhai K (1986) Treatment of Petroleum industry oil sludge in soil, Tibtech. Elsevier Science Publishers B.V., Amsterdam, pp 202–206

    Google Scholar 

  27. Salonen M, Middeldorp P, Briglia M, Valo R, Haggblom M and McBain A Kamely D, Chakrabarty A and Omenn, GS (eds) (1989) Cleanup of old industrial sites. In: Biotechnology and biodegradation. Portfolio Publishing, The Woodlands, TX, pp 347–365

    Google Scholar 

  28. Sharma H, Barber JT, Ensley HE, Polito MA (1997) A comparison of the toxicity of phenol and chlorinated phenols by Lemna gibba with reference to 2, 4, 5-trichloorophenol. Environ Toxicol Chem 16:346–350

    CAS  Google Scholar 

  29. Tuah PBM (2006) The performance of phenol biodegradation by candida tropicalis Retl-Cr-1 using batch and fed-batch fermentation techniques. Ph.D. Thesis, Universiti Teknologi Malaysia

    Google Scholar 

  30. Bruce RN, Santodonato J, Neal MW (1987) Summary review of the health effects associated with phenol. Toxicol Ind Health 3:535–568

    CAS  Google Scholar 

  31. Gosslin RE, Smith RP, Hodge HC, Braddock JE (1984) Phenol in: clinical toxicology of commercial products, vol 3. Williams and Wilkins, Baltimore, MD, pp 345–346

    Google Scholar 

  32. Merliss RR (1972) Phenol marasmus. J Occu Environ Med 14:55–56

    Article  CAS  Google Scholar 

  33. Keith H, Telliard WA (1979) Priority pollutants I. A perspective view. Environ Sci Technol 13:416–423

    Article  Google Scholar 

  34. World Health Organization (WHO) (1994) Phenol, environmental health criteria-EHC 161. WHO, Geneva

    Google Scholar 

  35. International Programme on Chemical Safety (IPCS) (1999) Phenol poisons information monograph. PIM 412. (http://www.inchem.org/documents/pims/chemical/pim412.htm)

  36. International Programme on Chemical Safety (IPCS) (1994) Phenol. Health and safety guide no 88. WHO. Geneva. Printed by Wissenschsftliche Verlagsgesellschaft, Stuttgart. http://www.inchem.org/documents/hsg/hsg/hsg88_e.htm

  37. Barker EL, Peter EB, Petrecia HF, Grant SK (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33:89–94

    Google Scholar 

  38. Agency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological Profile for Phenol. US Department of Health and Human Services. Atlanta, US. http://www.epa.gov/ttn/atw/hlthef/phenol.html

  39. Kim JH, Oh KK, Lee ST, Kim SW, Hong SI (2002) Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed-bed reactor. Process Biochem 37(12):1367–1373

    Article  CAS  Google Scholar 

  40. US Environmental Protection Agency (2002) Toxicological review of phenol (CAS No. 108-95-2) EPA/635/R-02/006, In support of summary information on the integrated risk information system (IRIS), Washington DC

    Google Scholar 

  41. Iurascu B, Siminiceanu I, Vione D, Vicente MA, Gil A (2009) Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite. Water Res 43:1313–1322

    Article  CAS  Google Scholar 

  42. American conference of Governmental Industrial Hygienists standards (ACGIH) Manual, 2005, and United States Environmental Protection Agency, EPA, 816-F-01-007, 2006

    Google Scholar 

  43. Warner MA, Harper JV (1985) Cardiac dysrhythmias associated with chemical peeling with phenol. Anesthesiology 62:366–7

    Article  CAS  Google Scholar 

  44. Budavari S (ed) (1996) The Merck index: an encyclopedia of chemical, drugs, and biologicals. Merck, Whitehouse Station, NJ

    Google Scholar 

  45. Gupta S, Ashrith G, Chandra D, Gupta AK, Finkel KW, Guntupalli JS (2008) Acute phenol poisoning: a life – threatening hazard of chronic pain relief. Clin Toxicol 46:250–253

    Article  CAS  Google Scholar 

  46. Lathasree S, Nageswara Rao A, Sivasankar B, Sadasivam V, Rengaraj K (2004) Heterogeneous photocatalytic mineralization of phenols in aqueous solutions. J Mol Cat A Chem 223:101–105

    Article  CAS  Google Scholar 

  47. Sato K, Takimoto K, Tsuda S (1978) Degradation of aqueous phenol solution by gamma irradiation. J Am Chem Soc 12(9):1043–1046

    CAS  Google Scholar 

  48. Lai T-L, Lee C-C, Wu K-S, Shu Y-Y, Wang C-B (2006) Microwave-enhanced catalytic degradation of phenol over nickel oxide. Appl Catal B 68:147–153

    Article  CAS  Google Scholar 

  49. Gondal MA, Seddiqi Z (2006) Laser-induced photo-catalytic removal of phenol using n-type WO3 semiconductor catalyst. Chem Phys Lett 417:124–127

    Article  CAS  Google Scholar 

  50. Gondal MA, Sayeed MN, Seddiqi Z (2008) Laser enhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst. J Hazard Mater 155:83–89

    Article  CAS  Google Scholar 

  51. Matthews RW, McEvoy SR (1992) Destruction of phenol in water with sun, sand and photocatalysis. Sol Energy 49(6):507–513

    Article  CAS  Google Scholar 

  52. Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterial TiO2 in wastewater. Chem Eng J 119:55–59

    Article  CAS  Google Scholar 

  53. Karunakaran C, Dhanalakshmi R (2008) Semiconductor-catalyzed degradation of phenols with sunlight. Sol Energy Mater Sol Cells 92:1315–1321

    Article  CAS  Google Scholar 

  54. Karunakaran C, Dhanalakshmi R (2009) Phenol degradation on Pr6O11 surface under UV-A light. Synergistic photocatalysis by semiconductors. Radiat Phys Chem 78:8–12

    Article  CAS  Google Scholar 

  55. Cotto MC, Emiliano A, Nieto S, Duconge J, Roque-Malherbe R (2009) Degradation of phenol by mechanical activation of a rutile catalyst. J Colloid Interface Sci 339:133–139

    Article  CAS  Google Scholar 

  56. (a) Feng YJ, Li XY (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Water Res 37:2399–2407. (b) Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S (2005) Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Res 39: 1601–1613. (c) Li XY, Cui YH, Feng YJ, Xie ZM Dong JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39: 1972–1981

    Google Scholar 

  57. Wang Y-Q, Gu B, Xu W-L (2009) Electro-catalytic degradation of phenol on several metal-oxide anodes. J Hazard Mater 162:1159–1164

    Article  CAS  Google Scholar 

  58. Torres RA, Torres W, Peringer P, Pulgarin C (2003) Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure–reactivity relationship assessment. Chemosphere 50:97–104

    Article  CAS  Google Scholar 

  59. Trabelsi F, Ait-Lyazidi H, Ratsimba B, Wilhelm AM, Delmas H, Fabre P-L, Berlan J (1996) Oxidation of phenol in waste water by sonoelectrochemistry. Chem Eng Sci 51(10):1857–1865

    Article  CAS  Google Scholar 

  60. Liu Z, Zhang X, Nishimoto S, Jin M, Tryk DA, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  61. Kryst K, Karamanev DG (2001) Aerobic phenol biodegradation in an inverse fluidized-bed biofilm reactor. Ind Eng Chem Res 40:5436–5439

    Article  CAS  Google Scholar 

  62. Jiang H-L, Tay J-H, Maszenan AM, Tay ST-L (2006) Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 40:6137–6142

    Article  CAS  Google Scholar 

  63. Mordocco A, Jenkins CKR (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb Technol 25:530–536

    Article  CAS  Google Scholar 

  64. Pai S-L, Hsu Y-L, Chong N-M, Sheu C-S, Chen C-H (1995) Continuous degradation of phenol by Rhodococcus SR immobilized on granular activated carbon and in calcium alginate. Biores Technol 51:37–42

    Article  CAS  Google Scholar 

  65. Santos VL, Linardi VR (2004) Biodegradation of phenol by a filamentous fungi isolated from industrial effluents – identification and degradation potential. Process Biochem 39:1001–1006

    Article  CAS  Google Scholar 

  66. Perron N, Welander U (2004) Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process. Chemosphere 55:45–50

    Article  CAS  Google Scholar 

  67. Fanga HHP, Lianga DW, Zhanga T, Liu Y (2006) Anaerobic treatment of phenol in wastewater under thermophilic condition. Water Res 40:427–434

    Article  CAS  Google Scholar 

  68. Karlsson A, Ejlertsson J, Nezirevic D, Svensson BH (1999) Degradation of phenol under meso- and thermophillic, anaerobic conditions. Anaerobe 5(1):25–35

    Article  CAS  Google Scholar 

  69. Akaya G, Erhan E, Keskinler B, Algur OF (2002) Removal of phenol from wastewater using membrane-immobilized enzymes Part II. Cross-flow filtration. J Membr Sci 206:61–68

    Article  Google Scholar 

  70. Luo H, Liu G, Zhang R, Jin S (2009) Phenol degradation in microbial fuel cells. Chem Eng J 147:259–264

    Article  CAS  Google Scholar 

  71. Moussavi G, Mahmoudi M, Barikbin B (2009) Biological removal of phenol from strong wastewaters using a novel MSBR. Water Res 43:1295–1302

    Article  CAS  Google Scholar 

  72. Esplugas S, Gim!enez J, Contreras S, Pascual E, Rodríguez M (2002) Comparison of different advanced oxidation processes for phenol degradation. Water Res 36:1034–1042

    Article  CAS  Google Scholar 

  73. Sano N, Yamamoto T, Takemori I, Kim S-I, Eiad-ua A, Yamamoto D, Nakaiwa M (2006) Degradation of phenol by simultaneous use of gas-phase corona discharge and catalyst-supported mesoporous carbon gels. Ind Eng Chem Res 45:2897–2900

    Article  CAS  Google Scholar 

  74. Li J, Sato M, Ohshima T (2007) Degradation of phenol in water using a gas–liquid phase pulsed discharge plasma reactor. Thin Solid Films 515:4283–4288

    Article  CAS  Google Scholar 

  75. Liu YJ, Xuan Zhen Jian G (2005) Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution. Environ Sci Technol 39:8512–8517

    Article  CAS  Google Scholar 

  76. Li P, Takahashi M, Chiba K (2009) Degradation of phenol by the collapse of microbubbles. Chemosphere 75:1371–1375

    Article  CAS  Google Scholar 

  77. Petrier C, Lamy M-F, Francony A, Benahcene A, David B (1994) Sonochemical degradation of phenol in dilute aqueous solutions: comparison of the reaction rates at 20 and 487 kHz. J Phys Chem 98:10514–10520

    Article  CAS  Google Scholar 

  78. Petrier C, Francony A (1997) Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrason Sonochem 4(4):295–300

    Article  CAS  Google Scholar 

  79. Gogate PR, Mujumdar S, Thampi J, Wilhelm AM, Pandit AB (2004) Destruction of phenol using sonochemical reactors: scale up aspects and comparison of novel configuration with conventional reactors. Sep Purif Technol 34:25–34

    Article  CAS  Google Scholar 

  80. Chen Y-C, Smirniotis P (2002) Enhancement of photocatalytic degradation of phenol and chlorophenols by ultrasound. Ind Eng Chem Res 41:5958–5965

    Article  CAS  Google Scholar 

  81. Wu C, Liu X, Wei D, Fan J, Wang L (2001) Photosonochemical degradation of phenol in water. Water Res 35(16):3927–3933

    Article  CAS  Google Scholar 

  82. Kubo M, Matsuoka K, Takahashi A, Shibasaki-Kitakawa N, Yonemoto T (2005) Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles. Ultrason Sonochem 12:263–269

    Article  CAS  Google Scholar 

  83. Papadaki M, Emery RJ, Abu-Hassan MA, Bustos AD, Metcalfe IS (2004) Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents. Sep Purif Technol 34(1–3):35–42

    Article  CAS  Google Scholar 

  84. Entezari MH, Petrier C, Devidal P (2003) Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason Sonochem 10:103–108

    Article  CAS  Google Scholar 

  85. Molina R, Martinez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B Environ 66:198–207

    Article  CAS  Google Scholar 

  86. Bremner DH, Molina R, Martınez F, Melero JA, Segura Y (2009) Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US–Fe2O3/SBA-15–H2O2). Appl Catal B 90:380–388

    Article  CAS  Google Scholar 

  87. Segura Y, Molina R, Martínez F, Melero JA (2009) Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrason Sonochem 16:417–424

    Article  CAS  Google Scholar 

  88. Chand R, Ince NH, Gogate PR, Bremner DH (2009) Phenol degradation using 20, 300 and 520 kHz ultrasonic reactors with hydrogen peroxide, ozone and zero valent metals. Sep Purif Technol 67:103–109

    Article  CAS  Google Scholar 

  89. Entezari MH, Petrier C (2003) A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols. Ultrason Sonochem 10:241–246

    Article  CAS  Google Scholar 

  90. Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Combined effect of ultrasound and nanoclay on adsorption of phenol. Ultrason Sonochem 15:1033–1037

    Article  CAS  Google Scholar 

  91. Sivasankar T, Moholkar VS (2009) Mechanistic approach to intensification of sonochemical degradation of phenol. Chem Eng J 149:57–69

    Article  CAS  Google Scholar 

  92. Zheng W, Maurin M, Tarr MA (2005) Enhancement of sonochemical degradation of phenol using hydrogen atom scavengers. Ultrason Sonochem 12:313–317

    Article  CAS  Google Scholar 

  93. Bapat PS, Gogate PR, Pandit AB (2008) Theoretical analysis of sonochemical degradation of phenol and its chloro-derivatives. Ultrason Sonochem 15:564–570

    Article  CAS  Google Scholar 

  94. Wang Y, Yin L, Gedanken A (2002) Sonochemical synthesis of mesoporous transition metal and rare earth oxides. Ultrason Sonochem 9(6):285–290

    Article  CAS  Google Scholar 

  95. Rozenberg E, Gorodetsky G, Felner I, Sominski E, Gedanken A, Mukovskii YM (2006) Magnetic properties of crystalline La0.9Ca0.1MnO3: Comparison of bulk and nanometer-sized samples. J Appl Phys 99:08Q305

    Article  CAS  Google Scholar 

  96. Raebiger J, Miller W (2002) Magnetic ordering in the rare earth molecule-based magnets, Ln(TCNE)3 (Ln = Gd, Dy; TCNE = tetracyanoethylene). J S Inorg Chem 41(12):3308–3312

    Article  CAS  Google Scholar 

  97. Weang ZC, Wang LS (1997) Thermodynamic properties of the rare earth element vapor complexes LnAl3Cl12 from Ln = La to Lu. Inorg Chem 36(8):1536–1540

    Article  Google Scholar 

  98. Viswanathan B (1984) Solid state and catalytic properties of rare earth orthocobaltites – a new generation catalysts. J Sci Ind Res 44:66–74

    Google Scholar 

  99. Zou Z, Ye J, Arakawa H (2002) Role of R in Bi2RNbO7 (R = Y, Rare earths); Effect on band structure and photocatalytic properties. J Phys Chem B 106(3):517–520

    Article  CAS  Google Scholar 

  100. Cussen EJ, Lynham DR, Rogers J (2006) Magnetic order arising from structural distortion: structure and magnetic properties of Ba2LnMoO6. J Chem Mater 18:2855–2866

    Article  CAS  Google Scholar 

  101. Huang YH, Fjellvag H, Karppinen M, Hauback BC, Yamuchi H, Goodenough JB (2006) Crystal and magnetic structure of the orthorhombic perovskite YbMnO3. Chem Mater 18:2130–2134

    Article  CAS  Google Scholar 

  102. Ryaznov M, Keinle L, Simon A, Mattausch HU (2005) New synthesis route to and physical properties of lanthanum monoiodide. Inorg Chem 45:2068–2074

    Article  CAS  Google Scholar 

  103. Mills AM, Ruck M (2005) Ce53Fe12S90X3 (X = Cl, Br, I): The first rare-earth transition-metal sulphide halides. Inorg Chem 45:5172–5178

    Article  CAS  Google Scholar 

  104. Colina JZ, Nix RM, Weiss H (2005) Growth, structure, and stability of ceria films on Si (111) and the application of CaF2 buffer layers. J Phys Chem B 109:10978–10985

    Article  CAS  Google Scholar 

  105. Gauthier G, Jobic S, Evain M, Koo HJ, Whangbo MH, Fouassier C, Brec R (2003) Synthesis, structures and optical properties of yellow Ce2SiS5, Ce6Si4S17, and Ce4Si3S12 materials. Chem Mater 15:828–837

    Article  CAS  Google Scholar 

  106. Bernot K, Bogani L, Caneschi A, Gatteschi D, Sessoli R (2006) A family of rare-earth based single chain magnets: playing with anisotropy. J Am Chem Soc 128:7947–7956

    Article  CAS  Google Scholar 

  107. Lin-hai Y, Miao S, Wang-Liang Z, Zhu-De X (2001) Photocatalytic activity of lanthanum doping TiO2. J Zhejiang University (Sci) 2(3):271–274

    Article  Google Scholar 

  108. O’Connell M, Norman AK, Huttermann CF, Morris MA (1999) Catalytic oxidation over lanthanum-transition metal perovskite materials. Catal Today 47:123–132

    Article  Google Scholar 

  109. Sakatani Y, Nunoshige J, Ando H, Okusako K, Koike H, Takata T, Kondo JN, Hara M, Domen K (2003) Photocatalytic decomposition of acetaldhyde under visible light irradiation over La3+ and N Co-doped TiO2. Chem Lett 32(12):1156–1157

    Article  CAS  Google Scholar 

  110. Xiao Q, Si Z, Zhang J, Xiao C, Yu Z, Qiu G (2007) Effects of samarium dopant on photocatalytic activity of TiO2 nanocrystallite for methylene blue degradation. J Mater Sci 42:9194–9199

    Article  CAS  Google Scholar 

  111. Page RH, Schaffers KI, Payne SA, Krupke WF (1997) Dy-doped chlorides as gain media for 1.3 μm telecommunications amplifiers. J Lightwave Technol 15(5):786–793

    Article  CAS  Google Scholar 

  112. Behrendt DR, Legvold S, Spedding FHC (1958) Magnetic properties of dysprosium single crystals. Phys Rev 109:1544–1547

    Article  CAS  Google Scholar 

  113. Qi M-H, Liu G-F (2004) Synthesis and photoelectronic properties on a series of lanthanide dysprosium(III) complexes with acetylacetonate and meso-tetraalkyltetrabenzoporphyrin. Solid State Sci 6(3):287–294

    Article  CAS  Google Scholar 

  114. Perkas N, Roffer H, Vradman L, Landau MV, Gedanken A (2006) Sonochemically prepared Pt/CeO2 and its application as a catalyst in ethyl acetate combustion. Langmuir 22:7072–7077

    Article  CAS  Google Scholar 

  115. Fu Q, Deng W, Saltsburg H, Flytzani-Stephanopoulos M (2005) Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction. Appl Catal B 56:57–68

    Article  CAS  Google Scholar 

  116. Thammachart M, Meeyoo V, Risksomboon T, Osuwan S (2001) Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation. Catal Today 68(1):53–61

    Article  CAS  Google Scholar 

  117. Scire S, Minico S, Crisafulli C, Satriano C, Pistone (2003) Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Appl Catal B Environ 40(1–8):43–49

    Article  CAS  Google Scholar 

  118. Zheng X-C, Wu S-H, Wang S-P, Wang S-R, Zheng S-M, Huang W-P (2005) The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon monoxide oxidation. Appl Catal A 283(1–2):217–223

    CAS  Google Scholar 

  119. Park PW, Ledford JS (1998) The influence of surface structure on the catalytic activity of cerium promoted copper oxide catalysts on alumina: oxidation of carbon monoxide and methane. Catal Lett 50(1–2):41–48

    Article  CAS  Google Scholar 

  120. Thevenin PO, Pettersson AALJ, Jaras SG, Fierro JLG (2003) Catalytic combustion of methane over cerium-doped palladium catalysts. J Catal 215:78–86

    Article  CAS  Google Scholar 

  121. Zarraga-Colina J, Nix RM, Weiss H (2005) Growth, structure, and stability of ceria films on Si(111) and the application of CaF2 buffer layers. J Phys Chem B 109(21):10978–10985

    Article  CAS  Google Scholar 

  122. Gauthier G, Jobic S, Evain M, Koo H-J, Whangbo M-H, Fouassier C, Brec R (2003) Syntheses, structures, and optical properties of yellow Ce2SiS5, Ce6Si4S17, and Ce4Si3S12 materials. Chem Mater 15(4):828–837

    Article  CAS  Google Scholar 

  123. Pankaj, Verma M (2009) Sonophotocatalytic behavior of cerium doped salts of Cu(II), Co(II) and Mn(II) in the degradation of phenol. Ind J Chem 48A:367–371

    CAS  Google Scholar 

  124. Juengsuwattananon K, Jaroenworaluck A, Panyathanmaporn T, Jinawath S, Supothina S (2007) Effect of water and hydrolysis catalyst on the crystal structure of nanocrystalline TiO2 powders prepared by sol-gel method. Physica status solidi a 204(6):1751–1756

    Article  CAS  Google Scholar 

  125. Ali Z, Zuhri A (1984) Spectrophotometric studies and analytical application of Ce(III) chelates with1-(2-Pyridylazo)-2-naphthol (PAN). Monatsh Chem 115(1):57–58

    Article  Google Scholar 

  126. Franson MAH (1985) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC, pp 560–561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pankaj, Verma, M. (2010). Sonochemical Degradation of Phenol in the Presence of Inorganic Catalytic Materials. In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_11

Download citation

Publish with us

Policies and ethics