Skip to main content

Sonochemical Study on Multivalent Cations (Fe, Cr, and Mn)

  • Chapter
  • First Online:
  • 1672 Accesses

Abstract

The behaviour of many metal ions which are stable in more than one oxidation states in their aqueous solutions has been studied under sonochemical reaction conditions. Fe(II) is oxidized to Fe(III) and Fe(III) is reduced to Fe(II) with equal ease under sonochemical conditions. Besides, the oxidizing power of Cr2O 2−7 is found to be less than the MnO 4 ions, therefore, in a system containing both species, Cr3+ is susceptible to oxidation to Cr6+ and the MnO 4 to reduction to Mn2+.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Meciarova M, Toma S, Luche J-L (2001) The sonochemical arylation of malonic esters mediated by manganese triacetate. Ultrason Sonochem 8(2):119–122

    Article  CAS  Google Scholar 

  2. Kumar GV, Aurboch D, Gedanken A (2002) Influence of pH on the structure of the aqueous sonolysis products of manganese (III) acetylacetone. J Mater Res A 17(7):1706–1710

    Article  CAS  Google Scholar 

  3. Grieser F, Hobson R, Sostric J (1996) Sonochemical reduction processes in aqueous colloidal systems. Ultrasonics 34(2–5):547–550

    Article  CAS  Google Scholar 

  4. Ge J, Qu J (2003) Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation. J Hazard Mater 100:197–207

    Article  CAS  Google Scholar 

  5. Meciarova M, Toma S, Heribanova A (2000) Ultrasound assisted heterogeneous permanganate oxidation. Tetrahedron 56(43):8561–8566

    Article  CAS  Google Scholar 

  6. Sonochemical reduction of permanganate to manganese dioxide: the effect of H2O2 formed in the sonolysis of water on the rates of reduction: Kenji O, Masaki I, Ben Nishimura Rokura N, Yasuaki M (2009) Ultrason Sonochem 16(3):387–391

    Google Scholar 

  7. Mišík V, Riesz P (1996) Nitric oxide formation by ultrasound in aqueous solutions. J Phys Chem 100(45):17986–179948

    Article  Google Scholar 

  8. Liang F, Fan J, Guo Y, Fan M, Wang J, Yang H (2008) Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind Eng Chem Res 47(22):8550–8554

    Article  CAS  Google Scholar 

  9. Zboril R, Machala L, Mashlan M, Sharma V (2004) Iron(III) oxide nanoparticles in the thermally induced oxidative decomposition of prussian blue, Fe4[Fe(CN)6]3. Cryst Growth Design 4(6):1317–1325

    Article  CAS  Google Scholar 

  10. Xinglong Wu, Cao M, Changwen Hu, He X (2006) Sonochemical synthesis of prussian blue nanocubes from a single-source precursor. Cryst Growth Design 6(1):26–28

    Article  Google Scholar 

  11. Hung H-M, Hoffmann MR (1998) Kinetics and mechanism of the enhanced reductive degradation of CCl4 by elemental iron in the presence of ultrasound. Environ Sci Technol 32(19):3011–3016

    Article  CAS  Google Scholar 

  12. Minero C, Lucchiari M, Vione D, Maurino V (2005) Fe(III)-enhanced sonochemical degradation of methylene blue in aqueous solution. Environ Sci Technol 39(22):8936–8942

    Article  CAS  Google Scholar 

  13. Liang J, Komarov S, Hayashi N, Kasai E (2007) Recent trends in the decomposition of chlorinated aromatic hydrocarbons by ultrasound irradiation and Fenton’s reagent. J Mat Cycles Waste Manage 9(1):47–55

    Article  CAS  Google Scholar 

  14. Torres RA, Pétrier C, Combet E, Moulet F, Pulgarin C (2007) Bisphenol a mineralization by integrated ultrasound-UV-iron (II) treatment. Environ Sci Technol 41(1):297–302

    Article  CAS  Google Scholar 

  15. Dorathi PJ, Ranjit KP, Lee C-S (2008) Degradation of 2, 4-dichlorophenol in aqueous solution by sono-Fenton method. Korean J Chem Engi 25(1):112–117

    Article  Google Scholar 

  16. Luo T, Ai Z, Zhang L (2008) Fe@Fe2O3 core-shell nanowires as iron reagent. 4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis. J Phys Chem C 112(23):8675–8681

    Article  CAS  Google Scholar 

  17. Cravotto G, Binello A, Di Carlo S, Orio L, Zhi-Lin Wu, Ondruschka B (2010) Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation. Environ Sci Poll Res 17(3):674–687

    Article  CAS  Google Scholar 

  18. Tai Li Ji, Ya-Li S (2009) Degradation of AR 97 aqueous solution by combining ultrasound and Fenton reagent. Environ Prog Sustain Energy 29(1):101–106

    Google Scholar 

  19. Arul Dhas N, Koltypin Y, Gedanken A (1997) Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders. Chem Mater 9(12):3159–3163

    Article  Google Scholar 

  20. Gonsalves KE, Rangarajan SP, Law CC, Feng CR, Chow G.-M, Garcia-Ruiz A (1998) In: Chow G.-M, Gonsalves KE (eds) Nanotechnology: molecularly designed materials. In ACS symposium series, vol 622, chap 15, pp 220–236. Oxford University Press, USA

    Google Scholar 

  21. Franco DV, Da Silva LM, Jardim WF (2009) Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions. Water Air Soil Poll 197(4):49–60

    Article  CAS  Google Scholar 

  22. Kathiravan MN, Karthick R, Muthu N, Muthukumar K, Velan M (2010) Sonoassisted microbial reduction of chromium. Biochem Biotechnol 160(7):2000–2013

    Article  CAS  Google Scholar 

  23. Ultrasonics: Rooney JA (1981) In Edmonds PD (ed) Methods of Experimental Physics, vol 19, pp 299–353. Academic Press, New York

    Google Scholar 

  24. Lauterborn W (1982) Cavitation bubble dynamics – new tools for an intricate problem. Appl Sci Res 38:165

    Article  CAS  Google Scholar 

  25. Apfel RE (1981) In Edmonds PD (ed) Methods in Experimental Physics, vol 19, pp 356–413. Academic Press, New York.

    Google Scholar 

  26. Neppiras EA (1980) Acoustic cavitation. Phys Rep 61(3):159–251

    Article  Google Scholar 

  27. Suslick KS, Johnson RE (1984) Sonochemical activation of transition metals. J Am Chem Soc 106:6856–6858

    Article  CAS  Google Scholar 

  28. Enomoto N, Akagi JI, Z-l N (1996) Sonochemical powder processing of iron hydroxides. Ultrason Sonochem 3:S97–S103

    Article  CAS  Google Scholar 

  29. Gasgnier M, Beaury L, Derout J (2000) Ultrasound effects on metallic (Fe and Cr); iron sesquioxides (α-, γ-Fe2O3); calcite; copper, lead and manganese oxides as powders. Ultrason Sonochem 7:25–33

    Article  CAS  Google Scholar 

  30. Sostaric JZ, Mulvaney P, Grieser F (1995) Sonochemical dissolution of MnO2 colloids. J Chem Soc Faraday Trans 91:2843–2846

    Article  CAS  Google Scholar 

  31. Kruss P, Robertson DA, Mcmillen LA (1991) Effects of ultrasound on the cementation of cobalt on zinc. Ultrasonics 29:370–375

    Article  Google Scholar 

  32. Farmer AD, Collings AF, Jameson GJ (2000) The application of power ultrasound to the surface cleaning of silica and heavy mineral sands. Ultrason Sonochem 7(4):243–247

    Article  CAS  Google Scholar 

  33. Kuznetsov VM, Baranov AN, Oleinikov NN (1997) Sonochemical synthesis of Magnesium Ferrite. Dokl Akad Nauk 352(3):355–357

    CAS  Google Scholar 

  34. Belostotskii VF, Bemkin VM (1988) Ordre dans les solutions solides au cours de la déformation par les ultrasons aux températures de l’hélium liquide Ordering in solid solution during ultrasonic deformation at liquid helium temperatures. Metallokfizika 10(6):99–101

    CAS  Google Scholar 

  35. Pankaj, Manju C (2004) Effect of ultrasound on the redox reactions of iron (II) and (III). Ind J Chem 43(A):2098–2101

    Google Scholar 

  36. Pankaj, Chauhan (2004) Sonochemical studies of aqueous solutions of chromium and manganese in their cationic and oxoanionic states. Ind J Chem 43(A):1206–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pankaj, Chauhan, M. (2010). Sonochemical Study on Multivalent Cations (Fe, Cr, and Mn). In: Ashokkumar, M. (eds) Theoretical and Experimental Sonochemistry Involving Inorganic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3887-6_10

Download citation

Publish with us

Policies and ethics