Skip to main content

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 3))

Abstract

The high cost of chemical pesticides, its adverse effect on the environment and development of resistance against chemicals in the host demand an alternative approach for crop pests management, which should be ecofriendly and cost-effective. Entomopathogenic nematodes belonging to genera Steinernema and Heterorhabditis together with their symbiotic bacteria Xenorhabdus and Photorhabdus, respectively, and slug-parasitic nematodes Phasmarhabditis with its symbiotic bacteria Moraxella have been considered as promising biocontrol agents for the management of crop insect pests and slugs. These nematodes have short life cycle, wide host range, and can resist under unfavourable conditions and environmental extremes. Survival and pathogenicity of these nematodes vary from 5°C to 35°C. They can be mass produced under both in vivo and in vitro conditions. With the realization of these attributes among these bioagents there is a need to search out an ideal formulation and proper application technology to include them in pest management programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y. Culture of Steinernema feltiae on bran media. Jpn J Nematol. 1987;17:31–34.

    Google Scholar 

  • Adams BJ, Nguyen KB (2002) Taxonomy and systematics. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp. 1–33.

    Google Scholar 

  • Adjei MB, Smart GC Jr, Frank JH, Leppla NC. Control of pest mole crickets (Orthoptera: Gryllotalpidae) in bahiagrass pastures with the nematode Steinernema scapterisci (Rhabditida: Steinernematidae). Florida Entom. 2006;89:532–535.

    Google Scholar 

  • Akhurst RJ. Safety to non-target invertebrates of nematodes of economically important pests. In: Laird M, Lacey LA, Davidson EW, editors. Safety of microbial insecticides. Boca Raton, FL: CRC Press; 1990. pp. 233–240.

    Google Scholar 

  • Ali SS, Shaheen A, Pervez R, Hussain MA. Steinernema masoodi sp.n. and S. seemae sp.n. (Nematoda: Rhabditida:Steinernematidae) from India. Int J Nematol. 2005a;15:89–99.

    Google Scholar 

  • Ali SS, Ahmad R, Hussain MA, Parvez R. (2005b) Pest management in pulses through entomopathogenic nematodes. Indian Institute of Pulse Research, Kanpur, p 19.

    Google Scholar 

  • Bedding RA. Large-scale production, storage and transport of the insect-parasitic nematodes Neoaplectana spp. and Heterorhabiditis. Ann Appl Biol. 1984;101:117–120.

    Google Scholar 

  • Bedding RA. Low cost in vitro mass production of Steinernema(= Neoaplectana) and Heterorhabditis species (nematoda) for field control of insect pests. Nematolog. 1981;27:109–114.

    Google Scholar 

  • Bedding RA. (1988) Storage of insecticidal nematodes, World Patent No. WO 88/08668

    Google Scholar 

  • Bedding RA, Akhurst RJ. A simple technique for the detection of insect parasitic rhabditid nematodes in soil. Nematolog. 1975;21:109–110.

    Google Scholar 

  • Bedding RA, Molyneux AS. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematol. 1982;28:354–359.

    Google Scholar 

  • Bhatnagar A, Bareth SS. Effect of soil moisture on the survival of entomopathogenic nematode, Heterorhabditis bacteriophora Poinar 1976, in sandy loam soil. Pest Manag Econ Zool. 2003;11:1–6.

    Google Scholar 

  • Blinova SL, Ivanova ES. Culturing the nematode–bacterial complex of Neoaplectana carpocapsae in insects. In: Sonin MD, editor. Helminths of insects. New Delhi: Amerind Publishing; 1987. pp. 22–26.

    Google Scholar 

  • Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bact. 1993;43:249–255.

    CAS  Google Scholar 

  • Campbell JF, Gaugler R. Inter-specific variation in entomopathogenic nematodes foraging strategy: Dichotomy or variation along a continuum. Fund Appl Nematol. 1997;20:393–398.

    Google Scholar 

  • Campbell JF, Gaugler R. Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behavior. 1993;126:155–169.

    Google Scholar 

  • Campbell LR, Gaugler R. Mechanisms for exsheathment of entomopathogenic nematodes. Int J Parasitol. 1991a;21:219–224.

    Google Scholar 

  • Campbell LR, Gaugler R. Role of the sheath in desiccation tolerance of two entomopathogenic nematodes. Nematol. 1991b;37:324–332.

    Google Scholar 

  • Campos-Herrera R, Escuer M, Labrador S, Robertson L, Barrios LA, Gutierrez C. Distribution of entomopathogenic nematodes from La Rioja (Northern Spain). J Inver Path. 2007;95:125–139.

    Google Scholar 

  • Cannayane I, Banu JG, Subramaniam S, Rajavel DS. Preliminary evaluation of the entomopathogenic nematodes on the root grub, Basilepta fulvicome in cardamom. Int J Nematol. 2007;37:213–214.

    Google Scholar 

  • Chen-ShuLong, Li-XiuHua, Yan-AiHua, Spiridonov SE, Moens M. (2006) A new entomopathogenic nematode Steinernema hebeiense sp. n. (Rhabditida: Steinernematidae), from North China. Nematol 8:563–574.

    Google Scholar 

  • Choo HL, Kaya HK, Burlando TM, Gaugler R. Entomopathogenic nematodes: Host-finding ability in the presence of plant roots. Environ Entom. 1989;18:1136–1140.

    Google Scholar 

  • Coupland JB. Susceptibility of helicid snails to isolates of the nematode Phasmarhabditis hermaphrodita from southern France. J Inver Path. 1995;66:207–208.

    Google Scholar 

  • Cuthbertson AGS, Walters KFA, Northing P, Luo W. Efficacy of the entomopathogenic nematode, Steinernema feltiae, against sweetpotato whitefly Bemisia tabaci (Homoptera:Aleyrodidae) under laboratory and glasshouse conditions. Bull Ent Res. 2007;97:9–14.

    CAS  Google Scholar 

  • Das JN, Divakar BJ. Compatability of certain pesticides with DD-136 nematode. Plant Protect Bull. 1987;39:20–22.

    Google Scholar 

  • De-Nardo EAB, Sinderman A, Grewal SK, Grewal PS. Non-susceptibility of earthworm Eisenia fetida to the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent of slugs. Biocont Sci Technol. 2004;14:93–98.

    Google Scholar 

  • Dempsey CM, Griffin CT. The infectivity and behaviour of exsheathed and ensheathed Heterorhabditis megidis infective juveniles. Nematology. 2003;5:49–53.

    Google Scholar 

  • Dix I, Burnell AM, Griffin CT, Joyce SA, Nugent JM. The identification of biological species in the genus Heterorhabditis (Nematoda: Heterorhabditidae) by cross breeding second generation amphimictic adults. Parasitology. 1992;104:509–518.

    Google Scholar 

  • Dutky SR, Thompson JV, Cantwell GE. A technique for mass propagation of the DD-136 nematode. J Insect Pathol. 1964;6:417.

    Google Scholar 

  • Easwaramoorthy S, Sankaranarayanan C. Biological control of sugarcane pests with entomopathogenic nematodes. In: Hussaini SS, Rabindra RJ, Nagesh M, editors. Current status of research on entomopathogenic nematodes in India. Bangalore: Project Directorate of Biological Control; 2003. pp. 143–152.

    Google Scholar 

  • Ehlers RU, Shapiro-Ilan DI. Mass production. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI, editors. Nematodes as biocontrol agents. Wallingford, UK: CAB International; 2005. pp. 65–78.

    Google Scholar 

  • Ehlers RU, Oestergaard J, Hollmer S, Wingen M, Strauch O. Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophoraPhotorhabdus luminescens. Bio Cont (Dordrecht). 2005;50:699–716.

    Google Scholar 

  • Elawad SA, Mousa SA, Shahdad AS, Alwaash SA, Alamiri AMA. Potential of entomopathogenic nematodes against the red palm weevil in United Arab Emirates. Pak J Nematol. 2007;25:5–13.

    Google Scholar 

  • Emelianoff V, Sicard M, Brun N-le, Moulia C, Ferdy JB. Effect of bacterial symbionts Xenorhabdus on mortality of infective juveniles of two Steinernema species. Parasitol Res. 2007;100:657–659.

    PubMed  Google Scholar 

  • Ester A, Wilson MJ. Application of slug-parasitic nematodes. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI, editors. Nematodes as biocontrol agents. Wallingford, UK: CAB International; 2005. pp. 431–444.

    Google Scholar 

  • Flanders KL, Miller JM, Shields EJ. In vivo production of Heterorhabditis bacteriophora ‘Oswego’ (Rhabditida: Heterorhabditidae), a potential biological control agent for soil inhabiting insects in temperate regions. J Econ Entom. 1996;89:373–380.

    Google Scholar 

  • Forst S, Clarke D. Bacteria-nematode symbiosis. In: Gaugler R (ed) Entomopathogenic nematology. Wallingford, UK: CAB International; 2002. pp. 57–77.

    Google Scholar 

  • Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus spp. and Photorhabdus spp.: bugs, that kill bugs. Ann Rev Microbiol. 1997;51:47–72.

    CAS  Google Scholar 

  • Ganguly S, Gavas R. Effect of soil moisture on the infectivity of entomopathogenic nematode, Steinernema thermophilum Ganguly and Singh. Int J Nematol. 2004;14:78–80.

    Google Scholar 

  • Ganguly S, Singh LK. Optimum thermal requirements for infectivity and development of an indigenous entomopathogenic nematode, Steinernema thermophilum Ganguly & Singh. Int J Nematol. 2001;31:148–152.

    Google Scholar 

  • Ganguly S. Recent taxonomic status of entomopathogenic nematodes: a review. Int J Nematol. 2006;36:158–176.

    CAS  Google Scholar 

  • Gaugler R, Han R. Production technology. In: Gaugler R, editor. Entomopathogenic nematology. Wallingford, UK: CAB International; 2002. pp. 289–310.

    Google Scholar 

  • Gaugler R, Grewal P, Kaya HK, Smith-Fiola D. Quality assessment of commercially produced entomopathogenic nematodes. Bio Cont. 2000;17:100–109.

    Google Scholar 

  • Gaugler R, Lewis EE, Stuart RJ. Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecology. 1997;109:483–489.

    Google Scholar 

  • Georgis R. Commercialization of Steinernematid and Heterorhabditid entomopathogenic nematodes. Brighton Crop Protect Conf Ins Fung. 1990;1:275–280.

    Google Scholar 

  • Georgis R. Formulation and application technology. In: Gaugler R, Kaya HK, editors. Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC Press; 1990. pp. 173–191.

    Google Scholar 

  • Gitanjalidevi (2007) Effect on viability and infectivity of entomopathogenic nematodes (Meghalaya isolates). Int J Nematol 37:202–205.

    Google Scholar 

  • Glaser RW, Farrell CC. (1935) Field experiments with the Japanese beetle and its nematode parasite. J NY Entom Soc 43:345.

    Google Scholar 

  • Glaser RW. A pathogenic nematode of the Japanese beetle. J Parasitol. 1932;18:199.

    Google Scholar 

  • Glaser RW, McCoy EE, Girth HB. The biology and economic importance of a nematode parasitic in insects, J. Parasitology. 1940;26:479–495.

    Google Scholar 

  • Glazer I. (2002) Survival biology. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, Wallingford, UK, pp. 169–187.

    Google Scholar 

  • Glazer I, Novan A. Activity and persistence of entomoparasitic nematodes tested against Heliothis armigera. J Econ Entom. 1990;83:1795–1800.

    Google Scholar 

  • Glen DM, Wilson MJ, Brain P, Stroud G. Feeding activity and survival of slugs, Derocerus reticulatum, exposed to the rhabditid nematode, Phasmarhabditis hermaphrodita: a model of dose response. Bio Cont. 2000;17:73–81.

    Google Scholar 

  • Glen DM, Wilson MJ, Hughes L, Cargeeg P, Hajjar A. (1996) Exploring and exploiting the potential of the rhabditid nematode Phasmarhabditis hermaphrodita as a biocontrol agent for slugs. In: Henderson IF (ed) Slug and snail pests in agriculture. Monograph No. 66, British Crop Protection Council, Thornton Health, UK, pp 271–280.

    Google Scholar 

  • Glen DM, Wilson MJ, Pearce JD, Rodgers PB. (1994) Discovery and investigation of a novel nematode parasite for biological control of slugs. In: Proceedings of the Brighton Crop Protection Conference, pests and diseases, pp 617–624.

    Google Scholar 

  • Gothama AAA, Lawrence GW, Sikorowski PP. Activity and persistence of Steinernema carpocapsae and Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae on soybean. J Nematol. 1996;28:68–74.

    CAS  PubMed  Google Scholar 

  • Gothama AAA, Sikorowski PP, Lawrence GW. Interactive effects of Steinernema carpocapsae and Spodoptera exigua nuclear polyhedrosis on Spodoptera exigua larvae. J Inver Path. 1995;66:270–276.

    Google Scholar 

  • Grewal PS, Grewal SK, Tylor RAJ, Hammond RB. Application of molluscicidal nematodes to slug shelters: a novel approach to economic biological control of slugs. Bio Cont. 2001;22:72–80.

    Google Scholar 

  • Grewal PS. Enhanced ambient storage stability of an entomopathogenic nematode through anhydrobiosis. Pest Manag Sci. 2000;56:401–406.

    CAS  Google Scholar 

  • Grewal PS. Formulation and application technology. In: Gaugler R (ed) Entomopathogenic nematology. Wallingford, UK: CAB International; 2002. pp 265–287

    Google Scholar 

  • Grewal PS, Peters A. Formulation and quality. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI, editors. Nematodes as biocontrol agents. Wallingford, UK: CAB International; 2005. pp. 79–90.

    Google Scholar 

  • Grewal PS, Webber T, Batterley DA. Compatibility of Steinernema feltiae with chemicals used in mushroom production. Mush News. 1998;46:6–10.

    Google Scholar 

  • Grewal SK, Grewal PS, Hammond RB. Susceptibility of slugs (Mollusca: Gastropoda) native and non- native to north America to Phasmarhabditis hermaphrodita (Nematoda: Rhabditidae). Biocont Sci Tech. 2003;13:119–125.

    Google Scholar 

  • Griffin CT, Boemare NE, Lewis EE. Biology and behaviour. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI, editors. Nematodes as biocontrol agents. Wallingford, UK: CAB International; 2005. pp. 47–64.

    Google Scholar 

  • Griffin CT, Chaerani R, Fallon D, Reid AP, Downes MJ. (2000) Occurrence and distribution of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis indica in Indonesia. J Helmin 74:143–150.

    Google Scholar 

  • Griffin CT, Joyce SA, Dix I, Burnell AM, Downes MJ. Characterization of the entomopathogenic nematode Heterorhabditis (Nematoda: Heterorhabditidae) from Ireland and Britain by molecular and cross-breeding techniques, and the occurrence of the genus in these islands. Fun Appl Nematol. 1994;17:245–253.

    Google Scholar 

  • Gupta PP. Entomopathogenic nematodes-work done at Allahabad Agriculture Institute, Allahabad. In: Hussaini SS, Rabindra RJ, Nagesh M, editors. Current status of research on entomo­pathogenic nematodes in India. Bangalore: Project Directorate of Biological Control; 2003.pp. 161–166.

    Google Scholar 

  • Gwynn RL, Chapple AC, Smits PH. Post application persistence of entomopathogenic nematodes. In: Gwynn RL, Smits PH, Griffin C, Ehlers RU, Boemare N, Masson JP, editors. Cost 819 entomopathogenic nematodes. Application and persistence of entomopathogenic nematodes. Luxembourg: European Communities; 1999. pp. 89–94.

    Google Scholar 

  • Hapca S, Crawford J, Rae R, Wilson M, Young I. Movement of the parasitic nematode Phasmarhabditis hermaphrodita in the presence of mucus from the host slug Deroceras reticulatum. Bio Cont. 2007;41:223–229.

    Google Scholar 

  • Hara AH, Linderen JE, Kaya HK. (1981) Monoxenic mass production of the entomogenous nematode, Neoaplectana carpocapsae (Wieser), On dog food/agar medium, USDA/SEA, AAT-W-16

    Google Scholar 

  • Hass B, Hughes LA, Glen DM. Overall versus band application of the nematode Phasmarhabditis hermaphrodita with and without incorporation into soil for biological control of slugs in winter wheat. Biocont Sci Tech. 1999;9:579–586.

    Google Scholar 

  • Hazir S, Stock SP, Kaya HK, Koppenhofer AM, Keskin N. Developmental temperature effects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae (Nematoda: Steinernematidae). J Inver Path. 2001;77:243–250.

    CAS  Google Scholar 

  • Hominick WM. Biogeography. In: Gaugler R (ed) Entomopathogenic nematology. Wallingford, UK: CAB International; 2002. pp 115–143.

    Google Scholar 

  • Hominick WM, Reid AP, Bohan DA, Briscoe BR. Entomopathogenic nematodes: Biodiversity geographical distributions and the convention biological diversity. Biocont Sci Tech. 1996;6:317–331.

    Google Scholar 

  • Hussaini SS. (2001) Scope of entomopathogenic nematodes against crop pests. In: Rabindra RJ, Kennedy JS, Sathiah N, Rajasekaran B, Srinivasan MR (eds) Microbial control of crop pests. CAB International, Wallingford, UK, pp. 180–221.

    Google Scholar 

  • Jan ND, Mahar GM, Mahar AN, Hullio MH, Lanjar AG, Gower SR. Susceptibility of different insect pupae to the bacterial symbiont, Xenorhabdus nematophila, isolated from the entomopathogenic nematode, Steinernema carpocapsae. Pak J Nematol. 2008;26:59–67.

    Google Scholar 

  • Johnigk SA, Ehlers RU. Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematol. 1999;1:717–726.

    Google Scholar 

  • Jothi BD, Mehta UK. Impact of different temperatures on the infectivity and productivity of entomopathogenic nematodes on Galleria mellonella. Int J Nematol. 2007;17:158–162.

    Google Scholar 

  • Karunakar G, Easwaramoorthy S, David H. Susceptibility of nine lepidopteran insects to Steinernema glaseri, S. feltiae and Heterorhabditis indica infection. Int J Nematol. 1999;9:68–71.

    Google Scholar 

  • Kaya HK. Soil ecology. In: Gaugler R, Kaya HK, editors. Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC Press; 1990. pp. 93–115.

    Google Scholar 

  • Kaya HK, Stock SP. Techniques in insects nematology. In: Lacey L, editor. Manual of techniques in insect pathology, Biological Techniques Series. San Diego, CA: Academic; 1997. pp. 281–324.

    Google Scholar 

  • Kaya SKH, Gaugler R. Entomopathogenic nematodes. Ann Rev Entomol. 1993;38:181–206.

    Google Scholar 

  • Khan MR, Uzma K, Askary TH. Occurrence of Steinernema masoodi in Aligarh and its pathogenicity against six economically important insect pests. Int J Nematol. 2007;37:215–216.

    Google Scholar 

  • Koppenhofer AM, Rodriguez-Saona CR, Polavarapu S, Holdcraft RJ. Entomopatogenic nematodes for control of Phyllophaga Georgiana (Coleoptera: Scarabaeidae) in cranberries. Biocont Sci Tech. 2008;18:21–31.

    Google Scholar 

  • Krishnayya PV, Grewal PS. Effect of neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocont Sci Tech. 2002;12:259–266.

    Google Scholar 

  • Kumar MR, Parihar A, Siddiqui AU. Effects of entomopathogenic nematode, Heterorhabditis sp., on Spodoptera litura. Ann Plant Protect Sci. 2003;11:406–407.

    Google Scholar 

  • Kung SP, Gaugler R. Effects of soil temperature, moisture and relative humidity on entomopathogenic nematode persistence. J Inver Path. 1991;57:242–249.

    Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vails Pp. Insect pathogens as biological control agents. Do they have a future? Bio Cont. 2001;21:230–248.

    Google Scholar 

  • Lello ER, Patel MN, Matthews GA, Wright DJ. Application technology for entomopathogenic nematodes against foliar pests. Crop Prot. 1996;15:567–574.

    Google Scholar 

  • Lewis EE. Behavioural ecology. In: Gaugler R, editor. Entomopathogenic nematology. Wallingford, UK: CAB International; 2002. pp. 205–223.

    Google Scholar 

  • Lewis EE, Gaugler R, Harrison R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can J Zool. 1993;71:765–769.

    Google Scholar 

  • Lewis EE, Perez EE. Formulation and storage of entomopathogenic nematodes. Int J Nematol. 2004;14:30–34.

    Google Scholar 

  • Li SC. A new method for mass rearing of parasitic nematode, Neoaplectana spp. Plant Prot. 1984;10:36–37.

    Google Scholar 

  • Lindergen JE, Valero KA, Mackey BE. Simple in vivo production and storage methods for Steinernema carpocapsae infective juveniles. J Nematol. 1993;25:193–197.

    Google Scholar 

  • Mahar AN, Jan ND, Mahar AQ, Mahar GM, Hullio MH, Lajar AG. Efficacy of entomopathogenic bacterium Photorhabdus luminescens and its metabolites against diamondback moth Plutella xylostella larvae on Chinese cabbage and artificial diet. Pak J Nematol. 2008;26:69–82.

    Google Scholar 

  • Mahmoud MF. Combining the botanical insecticides NSK extract, NeemAzal T 5%, Neemix 4.5% and the entomopathogenic nematode Steinernema feltiae Cross N33 to control the peach fruit fly, Bactrocera zonata (Saunders). Plant Protect Sci. 2007;43:19–25.

    Google Scholar 

  • Malan AP, Nguyen KB, De-Waal JY, Tiedt L. Heterorhabditis safricana n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Nematology. 2008;10:381–396.

    CAS  Google Scholar 

  • Martens EC, Heungens K, Goodrich-Blair H. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J Bacteriol. 2003;185:3147–3154.

    CAS  PubMed  Google Scholar 

  • Maupas E. Modes et formes de reproduction des nematodes. Arch de Zool Exp et Gen. 1900;7:563–628.

    Google Scholar 

  • Mengert H. Nematoden und Schnecken. Zeits fur Morph und Okol der Tiere. 1953;4:311–349.

    Google Scholar 

  • Mohotti KM, Briscoe BR, Gowen SR, Bridge J, Mehta UK. (1998) Are entomopathogenic nematodes susceptible to infection by plant parasitic nematode biocontrol organism, Pasteuria penetrans? In: Proceedings of the 3rd international symposium of Afro-Asian society of Nematologists (TISAASN): Nematology: challenges and opportunities in 21st century, April 16–19, 1998. Sugarcane Breeding Institute, Coimbatore, India, pp. 281–285.

    Google Scholar 

  • Morley NJ, Morritt D. The effects of the slug biological control agent, Phasmarhabditis hermaphrodita (Nematoda), on non- target aquatic molluscs. J Inver Path. 2006;92:112–114.

    CAS  Google Scholar 

  • Mracek Z, Nguyen KB, Tailliez P, Boemare N, Chen-Shulong (2006) Steinernema sichuanense n. sp. (Rhabditida, Steinernematidae), a new species of entomopathogenic nematode from the province of Sichuan, east Tibetan Mts. China. J Inver Path 93:157–169.

    Google Scholar 

  • Nagesh M, Hussaini SS, Singh SP. Isolation and characterization of symbiotic bacteria from Heterorhabditis spp. and S. carpocapsae Weiser. Pest Manag Hort Ecos. 2002;8:38–42.

    Google Scholar 

  • Narayanan K, Gopalakrishnan C. Evaluation of entomopathogenic nematode, Steinernema feltiae against field population of mustard sawfly, Athalia lugens proxima (Klug) on radish. Int J Exp Biol. 2003;41:376–378.

    CAS  Google Scholar 

  • Nash RF, Fox RC. Field control of the pinetip moth by the nematode DD-136. J Econ Entom. 1969;62:660–663.

    CAS  Google Scholar 

  • Nguyen KB, Smart GC. Neosteinernema longicurvicauda n. gen. n. sp. (Rhabditida: steinernematidae) a parasite of the termite. Reticulitermes flavipes (Koller). J Nematol. 1994;26:162–174.

    CAS  PubMed  Google Scholar 

  • Nguyen KB, Malan AP, Gozel U. Steinernema khoisanae sp. nov. (Rhabditida: Steinernematidae), a newmentomopathogenic nematode from South Africa. Nematology. 2006;8:157–175.

    CAS  Google Scholar 

  • Nguyen KB, Qiu-LiHong, Zhou-Yong, Pang-Yi (2006b) Steinernema leizhouense sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from southern China, Russian. J Nematol 14:101–118.

    Google Scholar 

  • Nguyen KB, Puza V, Mracek Z. Steinernema cholashanensen n. sp. (Rhabditida: Steinernematidae) a new species of entomopathogenic nematode from the province of Sichuan, Chola Shan Mountains, China. J Inv Path. 2008;97:251–264.

    Google Scholar 

  • Nguyen KB, Shapiro-Ilan DI, Bata GNM. Heterorhabditis georgiana n. sp. (Rhabditida: Heterorhabditidae) from Georgia, USA. Nematology. 2008;10:433–448.

    CAS  Google Scholar 

  • Nilsson U, Gripwall E. Influence of application technique on the viability of biological control agents Verticillium lecanii and Steinernema feltiae. Crop Protect. 1999;18:53–59.

    Google Scholar 

  • Peters A, Backes J. Impact of substrate conditions and application method on the efficacy of Steinernema feltiae. IOBC/WPRS Bull. 2003;26:151–158.

    Google Scholar 

  • Peters A, Ehlers RU. Susceptibility of leather jackets (Tipula paludosa and Tipula oleracea; Tipulidae: Nematocera) to the entomopathogenic nematode Steinernema feltiae. J Inver Path. 1994;63:163–171.

    Google Scholar 

  • Phan LK, Subbotin SA, Waeyenberge L, Moens M. (2005) A new entomopathogenic nematode, Steinernema robustispiculum n. sp. (Rhabditida: Steinernematidae), from Chumomray National Park in Vietnam. Sys Parasitol 60:23–32.

    Google Scholar 

  • Phan LK, Takemoto S, Futai K. Steinernema ashiuense sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from Japan. Nematology. 2006;8:681–690.

    CAS  Google Scholar 

  • Poinar GO Jr. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. gen. sp. (Rhabditida: Heterorhabditidae n. fam.). Nematologica. 1975;21:463–470.

    Google Scholar 

  • Poinar GO Jr. Taxonomy and biology of a Steirernematidae and Heterorhabiditdae. In: Gaugler R, Kaya HK, editors. Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC Press; 1990. pp. 23–61.

    Google Scholar 

  • Poinar GO, Jr. Nematodes for biological control of insects. Boca Raton, FL: CRC Press; 1979. p 270

    Google Scholar 

  • Prabhuraj A, Viraktamath CA, Kumar ARV (2000) Entomopathogenic nematodes safer to earthworm. Ins Env 5:189.

    Google Scholar 

  • Rae RG, Robertson JF, Wilson MJ. The chemotactic response of Phasmarhabditis hermaphrodita (Nematoda: Rhabditida) to cues of Deroceras reticulatum (Mollusca: Gastropoda). Nematol. 2006;8:197–200.

    Google Scholar 

  • Ramos-Rodriguez O, Campbell JF, Ramaswamy SB. Efficacy of the entomopathogenic nematode Steinernema riobrave against the stored-product insect pests Tribolium castaneum and Plodia interpunctella. Bio Cont. 2007;40:15–21.

    Google Scholar 

  • Rovesti L, Deseo KV. Compatiblity of chemical pesticides with entomopathogenic nematodes, Steinernema carpocapsae Weiser and S feltiae Filipjev (Nematode: Heterorhabditidae. Nematologica. 1990;36:237–245.

    Google Scholar 

  • Rumbos C, Mendoza A, Kiewnick SA, Sikora RA. Effect of Paecilomyces lilacinus strain 251 on the survival and virulence of entomopathogenic nematodes under laboratory conditions. Nem Medit. 2007;35:103–107.

    Google Scholar 

  • Saleh MME, Hanounik SB, Al-Muhanna UE, Al-Dhahir HA, Al-Garrash ZH. Distribution of Heterorhabditis indica (Nematoda: Heterorhabditidae) in eastern Saudi Arabia. Int J Nematol. 2001;11:215–218.

    Google Scholar 

  • Salpiggidis G, Navrozidis E, Copland M. Entomopathogenic nematodes (Nematoda: Steinernematidae Heterorhabditidae) ascontrol agents for Parahypopta caestrum, a pest in the culture of Asparagus officinalis. Phytoparasitica. 2008;36:95–100.

    CAS  Google Scholar 

  • Schmiege DC. The feasibility of using a neoaplectanid nematode for control of some forest insect pests. J Econ Entom. 1963;56:427–431.

    Google Scholar 

  • Schneider AF. Uber eine Nematodenlarve und gewisse Verscheidenheiten in dn Geschlechsorganen der Nematoden. Zeits fur wissensch Zool. 1859;10:176–178.

    Google Scholar 

  • Shapiro-Ilan DI, Cate JR, Pena J, Hunsberger A, McCoy CW. Effects of temperature and host range on suppression of Diaprepes abbreviatus (Coloeptera: Curculionidae) by entomopathogenic nematodes. J Econ Entom. 1999;92:1086–1092.

    Google Scholar 

  • Shapiro-Ilan DI, Glazer I, Segal D. Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Bio Cont. 1997;8:153–159.

    Google Scholar 

  • Shapiro-Ilan DI, Cottrell TE. Susceptibility of the lesser peachtree borer (Lepidoptera: Sesidae) to entomopathogenic nematodes under laboratory conditions. Environ Entom. 2006;35:358–365.

    Google Scholar 

  • Shapiro-Ilan DI, Gaugler R. Production technology for entomopathogenic nematodes and their bacterial symbionts. J Indust Micro Biotech. 2002;28:137–146.

    CAS  Google Scholar 

  • Shapiro-Ilan DI, Lewis EE, Tedders WL, Son Y. Superior efficacy observed in entomopathogenic nematodes applied in infected host cadavers compared with application in aqueous suspension. J Inver Path. 2003;83:270–272.

    Google Scholar 

  • Shapiro-Ilan DI, Jackson M, Reilly CC, Hotchkiss MW. Effects of combining on entomopathogenic fungi or bacterium with entompathogenic nematodes on mortality of Curculio caryae (Coleoptera: Curculionidae). Bio Cont. 2004;30:119–126.

    Google Scholar 

  • Shapiro-Ilan, DI, Lewis, EE, Behle, RW, and McGuire, MR. (2001) Formulation of entomopathogenic nematode infected cadavers. J Inver Pathol 78:17–23.

    Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP. Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Bio Cont. 2006;38:124–133.

    Google Scholar 

  • Shapiro-Ilan DI, Mizell RF, Cottrell TE, Horton L. Control of plum curculio, Conotrachelus nenuphar, with entomopathogenic nematodes: effects of application, timing, alternate host plant, and nematode strain. Bio Cont. 2008;44:207–215.

    Google Scholar 

  • Shetlar DJ. (1999) Application methods in different cropping systems. In: Proceedings of the workshop on optimal use of insecticidal nematodes in pest management, August 28–30, New Brunswick, New Jersey, pp 31–36.

    Google Scholar 

  • Sicard M, Ramone H, Brun N-le, Pages S, Moulia C. Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Naturwissenschaften. 2005;92:472–476.

    CAS  PubMed  Google Scholar 

  • Simard L, Belair G, Gosselin ME, Dionne J. Virulence of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) against Tipula paludosa (Diptera: Tipulidae), a turfgrass pest on golf courses. Biocont Sci Tech. 2006;16:789–801.

    Google Scholar 

  • Somasekhar N, Mehta UK. Infectivity of Pasteuria penetrans to entomopathogenic nematodes. Nem Medit. 2000;28:13–14.

    Google Scholar 

  • Somavanshi VS, Ganguly S, Paul AVN. Field efficacy of the entomopathogenic nematode Steinernema thermophilum Ganguly and Singh (Rhabditida: Steinernematidae) against diamondback moth (Plutella xylostella L.) infesting cabbage. Bio Cont. 2006;37:9–15.

    Google Scholar 

  • Steiner G. Aplectana kraussei n. sp., eine in der Blatwespe, lyda sp. Parasitirende Nematodenform, nebst Bomerkungen uber das Seitenorgan der parasitischen Nematoden. Zentral blatt fur Bakteriologie Parasitenkunde Infektiozskranheiten und Hygiene Abteilung I Originale. 1923;59:14–18.

    Google Scholar 

  • Sundarababu R, Sankaranarayanan C. Biological control of insects using nematodes. In: Trivedi PC, editor. Recent advances in plant nematology. New Delhi: CBS Publishers and Distributors; 1998. pp. 153–170.

    Google Scholar 

  • Susurluk IA. Influence of temperature on the vertical movement of the entomopathogenic nematodes Steinernema feltiae (TUR-S3) and Heterorhabditis bacteriophora (TUR-H2) and infectivity of the moving nematodes. Nematology. 2008;10:137–141.

    Google Scholar 

  • Tan L, Grewal PS. Infection behaviour of the rhabditid nematode Phasmarhabditis hermaphrodita to the grey garden slug Deroceras reticulatum. J Parasitol. 2001;87:1349–1354.

    CAS  PubMed  Google Scholar 

  • Tan L, Grewal PS. Pathogenecity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Appl Environ Microbiol. 2001;67:5010–5016.

    CAS  PubMed  Google Scholar 

  • Tan L, Grewal PS. Endotoxin activity of Moraxella osloensis against the grey garden slug, Deroceras reticulatum. Appl Environ Microbiol. 2002;68:3943–3947.

    CAS  PubMed  Google Scholar 

  • Tanada Y, Kaya HK. Insect pathology. New York: Academic; 1993.

    Google Scholar 

  • Tarakanov VI. Methods of continous axenic cultivation of the insect nematode. Neoaplectana glaseri, Turdy Vsesoyuznogo Instituta Gel’mintologii. 1980;25:106–110.

    Google Scholar 

  • Timper P, Kaya HK. Role of the second stage cuticle of entomogenous nematodes in preventing infection by nematophagous fungi. J Inver Path. 1989;54:314–321.

    Google Scholar 

  • Toledo J, Rojas R, Ibarra JE. Efficiency of Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae) on Anastrepha serpentina (Diptera: Tephritidae) larvae under laboratory conditions. Florida Entom. 2006;89:524–526.

    Google Scholar 

  • Travassos L. Sobre o genera. Oxysomatium Boletim Biologico. 1927;5:20–21.

    Google Scholar 

  • Unlu IO, Ehlers RU, Susurluk A. Additional data and first record of the entomopathogenic nematode Steinernema weiseri from Turkey. Nematology. 2007;9:739–741.

    CAS  Google Scholar 

  • Uribe-Lorio L, Mora M, Stock SP. First record of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Costa Rica. J Inver Path. 2005;88:226–231.

    Google Scholar 

  • Uribe-Lorio L, Mora M, Stock SP. Steinernema costaricense n. sp. and S. puntauvense n. sp. (Rhabditida: Steinernematidae), two new entomopathogenic nematodes from Costa Rica. Syst Parasitol. 2007;68:167–182.

    PubMed  Google Scholar 

  • Wang Y, Bilgrami AL, Shapiro-Ilan D, Gaugler R. Stability of entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, during in vitro culture. J Indus Micro Biotech. 2007;34:73–81.

    CAS  Google Scholar 

  • Wang G, Han R, Chen J, Cao L. Combined efficacy of entomopathogenic nematode Steinernema carpocapsae all and pesticide against Rhabdoscelus lineaticollis (Heller). Chin J Biol Cont. 2007;23:218–222.

    Google Scholar 

  • Wharton DA, Surrey MR. Cold tolerance mechanisms of the infective larvae of the insect parasitic nematode. Heterorhabditis zelandica, Poinar, Cryo Letters. 1994;15:353–360.

    Google Scholar 

  • White GF. A method for obtaining infective nematode larvae from cultures. Science. 1927;66:302–303.

    CAS  PubMed  Google Scholar 

  • Wilson MJ, Glen DM, Hamacher GM, Smith JU. A model to optimize biological control of slugs using nematode parasites. Appl Soil Ecol. 2004;26:179–191.

    Google Scholar 

  • Wilson MJ. (2002) A nematode parasite for biological control of slugs, Ph.D. thesis, University of Bristol.

    Google Scholar 

  • Wilson MJ, Grewal PS. Biology, production and formulation of slug-parasitic nematodes. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI, editors. Nematodes as biocontrol agents. Wallingford, UK: CAB International; 2005. pp. 421–429.

    Google Scholar 

  • Wilson MJ, Glen DM, George SK. The rhabditid nematode Phasmarhabditis hermaphrodita as a potential biological-control agent for slugs. Biocont Sci Tech. 1993a;3:503–511.

    Google Scholar 

  • Wilson MJ, Glen DM, George SK, Butler RC. Mass cultivation and storage of the rhabditid nematode Phasmarhabditis hermaphrodita, a biocontrol agent for slugs. Biocont Sci Tech. 1993b;3:513–521.

    Google Scholar 

  • Wilson MJ, Glen JD, Pearce JD. (1993c) Biological control of molluscs. World Intellectual Property Organisation, Patent No. WO 93/00816, 38.

    Google Scholar 

  • Wilson MJ, George SK, Glen DM, Pearce JD, Rodgers PB. (1993d) Biological control of slug and snail pests with a novel parasitic nematode. In: ANPP third international conference on pests in agriculture, Montpellier, France, pp 425–432.

    Google Scholar 

  • Wilson MJ, Glen DM, George SK, Pearce JD. Selection of a bacterium for the mass production of Phasmarhabditis hermaphrodita (Nematoda, Rhaditidae) as a biocontrol agent for slugs. Fund Appl Nematol. 1995a;18:419–425.

    Google Scholar 

  • Wilson MJ, Glen DM, Pearce JD, Rodgers PB. Monoxenic culture of the slug parasite Phasmarhabditis hermaphrodita (Nematoda, Rhabditidae) with different bacteria in liquid and solid phase. Fund Appl Nematol. 1995b;18:159–166.

    Google Scholar 

  • Wilson MJ, Glen DM, Hughes LA, Pearce JD, Rodgers PB. Laboratory tests of the potential of entomopathogenic nematodes for the control of field slugs (Deroceras reticulatum). J Inver Path. 1994;64:182–187.

    Google Scholar 

  • Wilson MJ, Hughes LA, Hamacher GM, Barahona LD, Glen DM. Effects of soil incorporation on the efficacy of rhabtidoid nematode, Phasmarhabditis hermophrodita as a biological control agent for slugs. Ann Appl Biol. 1996;128:117–126.

    Google Scholar 

  • Wilson MJ, Hughes LA, Hamacher GM, Glen DM. Effects of Phasmarhabditis hermaphrodita on non-target molluscs. Pest Manag Sci. 2000;56:711–716.

    CAS  Google Scholar 

  • Woodring JL, Kaya HK. (1988) Steinernematid and Heterorhabditid nematodes: a handbook of biology and techniques. Southern cooperative series bulletin 331, Arkansas Agricultural Experimental station, Fayetteville, Arkansas, pp. 30.

    Google Scholar 

  • Wouts WM. Mass production of the entomogenous nematodes Heterorhabditis heliothidis (Nematoda: Heterorhabditidae) on artificial media. J Nematol. 1981;13:467–469.

    CAS  PubMed  Google Scholar 

  • Wright DJ, Peters A, Schroer S, Fife JP. Application technology. In: Grewal PS, Ehlers RU, Shapiro-Ilan DI, editors. Nematodes as biocontrol agents. Wallingford, UK: CAB International; 2005. pp. 91–106.

    Google Scholar 

  • Young JM, Dunnill P, Pearce JD. Separation characteristics of liquid nematode cultures and the design of recovery operations. Biotech Prog. 2002;18:29–35.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarique Hassan Askary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Askary, T.H. (2010). Nematodes as Biocontrol Agents. In: Lichtfouse, E. (eds) Sociology, Organic Farming, Climate Change and Soil Science. Sustainable Agriculture Reviews, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3333-8_13

Download citation

Publish with us

Policies and ethics