Skip to main content

Neurophysiology of Sleep and Wakefulness

  • Chapter
  • First Online:
Book cover Sleepiness and Human Impact Assessment

Abstract

Sleep and wakefulness comprise highly evolved behavioral states in the animal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15(5 Pt 1):3526–3538

    CAS  PubMed  Google Scholar 

  2. Dijk DJ, Hayes B, Czeisler CA (1993) Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation. Brain Res 626(1–2):190–199

    CAS  PubMed  Google Scholar 

  3. Czeisler CA, Gooley JJ (2007) Sleep and circadian rhythms in humans. Cold Spring Harb Symp Quant Biol 72:579–597

    CAS  PubMed  Google Scholar 

  4. Moore RY (2007) Suprachiasmatic nucleus in sleep-wake regulation. Sleep Med 3:27–33

    Google Scholar 

  5. Chellappa SL, Gordijn MC, Cajochen C (2011) Can light make us bright? Effects of light on cognition and sleep. Prog Brain Res 190:119–133

    PubMed  Google Scholar 

  6. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14(6):557–568

    CAS  PubMed  Google Scholar 

  7. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204

    CAS  PubMed  Google Scholar 

  8. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC et al (2009) Cortical firing and sleep homeostasis. Neuron 63(6):865–878

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62

    PubMed  Google Scholar 

  10. Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62(2):143–150

    PubMed  Google Scholar 

  11. Franken P (2013) A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 4(13):00115–3

    Google Scholar 

  12. Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29(9):1820–1829

    CAS  PubMed  Google Scholar 

  13. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956

    PubMed Central  PubMed  Google Scholar 

  14. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    CAS  PubMed  Google Scholar 

  15. Fuller PM, Gooley JJ, Saper CB (2006) Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms 21(6):482–493

    CAS  PubMed  Google Scholar 

  16. Levey AI, Hallanger AE, Wainer BH (1987) Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci Lett 74(1):7–13

    CAS  PubMed  Google Scholar 

  17. Ramos OV, Torterolo P, Lim V, Chase MH, Sampogna S, Yamuy J (2011) The role of mesopontine NGF in sleep and wakefulness. Brain Res 21:9–23

    Google Scholar 

  18. Formaggio E, Dalfini AC, Fazzini F, Fumagalli G, Chiamulera C (2011) GABAergic neurons expressing p75 in rat substantia innominata and nucleus basalis. Mol Cell Neurosci 46(3):625–632

    CAS  PubMed  Google Scholar 

  19. Gritti I, Mariotti M, Mancia M (1998) GABAergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat. Neuroscience 85(1):149–178

    CAS  PubMed  Google Scholar 

  20. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8(11):4007–4026

    CAS  PubMed  Google Scholar 

  21. Saper CB (1984) Organization of cerebral cortical afferent systems in the rat. II. Magnocellular basal nucleus. J Comp Neurol 222(3):313–342

    CAS  PubMed  Google Scholar 

  22. Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18(12):4705–4721

    CAS  PubMed  Google Scholar 

  23. Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L (2012) Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 109(39):5

    Google Scholar 

  24. Inutsuka A, Yamanaka A (2013) The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol 4(18):6

    Google Scholar 

  25. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98(4):437–451

    CAS  PubMed  Google Scholar 

  26. Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24(28):6291–6300

    CAS  PubMed  Google Scholar 

  27. Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T (2011) Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci 31(17):6518–6526

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990

    CAS  PubMed  Google Scholar 

  29. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271(5246):216–219

    CAS  PubMed  Google Scholar 

  30. Greco MA, Lu J, Wagner D, Shiromani PJ (2000) c-Fos expression in the cholinergic basal forebrain after enforced wakefulness and recovery sleep. NeuroReport 11(3):437–440

    CAS  PubMed  Google Scholar 

  31. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20(10):3830–3842

    CAS  PubMed  Google Scholar 

  32. Liu YW, Li J, Ye JH (2010) Histamine regulates activities of neurons in the ventrolateral preoptic nucleus. J Physiol 588(Pt 21):4103–4116

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J et al (2000) Identification of sleep-promoting neurons in vitro. Nature 404(6781):992–995

    CAS  PubMed  Google Scholar 

  34. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731

    CAS  PubMed  Google Scholar 

  35. McGinty D, Szymusiak R (2000) The sleep-wake switch: a neuronal alarm. clockNat Med 6(5):510–511

    CAS  Google Scholar 

  36. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    CAS  PubMed  Google Scholar 

  37. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW et al (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181

    CAS  PubMed  Google Scholar 

  38. Moore RY (1993) Organization of the primate circadian system. J Biol Rhythms 8(9):S3–S9

    PubMed  Google Scholar 

  39. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073

    CAS  PubMed  Google Scholar 

  40. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20(2):600–605

    CAS  PubMed  Google Scholar 

  41. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Schwartz MD, Urbanski HF, Nunez AA, Smale L (2011) Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus). Brain Res 7:146–161

    Google Scholar 

  43. Bazhenov M, Timofeev I, Steriade M, Sejnowski T (2000) Spiking-bursting activity in the thalamic reticular nucleus initiates sequences of spindle oscillations in thalamic networks. J Neurophysiol 84(2):1076–1087

    CAS  PubMed  Google Scholar 

  44. Timofeev I, Contreras D, Steriade M (1996) Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. J Physiol 494(Pt 1):265–278

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Abrahamson EE, Leak RK, Moore RY (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport 12(2):435–440

    CAS  PubMed  Google Scholar 

  46. Deboer T, Overeem S, Visser NA, Duindam H, Frolich M, Lammers GJ et al (2004) Convergence of circadian and sleep regulatory mechanisms on hypocretin-1. Neuroscience 129(3):727–732

    CAS  PubMed  Google Scholar 

  47. Yoshida Y, Fujiki N, Nakajima T, Ripley B, Matsumura H, Yoneda H et al (2001) Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci 14(7):1075–1081

    CAS  PubMed  Google Scholar 

  48. Zeitzer JM, Buckmaster CL, Parker KJ, Hauck CM, Lyons DM, Mignot E (2003) Circadian and homeostatic regulation of hypocretin in a primate model: implications for the consolidation of wakefulness. J Neurosci 23(8):3555–3560

    CAS  PubMed  Google Scholar 

  49. Moore RY (1996) Neural control of the pineal gland. Behav Brain Res 73(1–2):125–130

    CAS  PubMed  Google Scholar 

  50. Cajochen C, Krauchi K, Wirz-Justice A (2003) Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol 15(4):432–437

    CAS  PubMed  Google Scholar 

  51. Dijk DJ, Shanahan TL, Duffy JF, Ronda JM, Czeisler CA (1997) Variation of electroencephalographic activity during non-rapid eye movement and rapid eye movement sleep with phase of circadian melatonin rhythm in humans. J Physiol 505(Pt 3):851–858

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Dijk DJ, Duffy JF (1999) Circadian regulation of human sleep and age-related changes in its timing, consolidation and EEG characteristics. Ann Med 31(2):130–140

    CAS  PubMed  Google Scholar 

  53. McCarley RW, Massaquoi SG (1992) Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J Sleep Res 1(2):132–137

    PubMed  Google Scholar 

  54. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Obal F Jr, Krueger JM (2003) Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci 1(8):d520–d550

    Google Scholar 

  56. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73(6):379–396

    CAS  PubMed  Google Scholar 

  57. Chagoya de Sanchez V, Hernandez Munoz R, Suarez J, Vidrio S, Yanez L, Diaz Munoz M (1993) Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat–possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res 612(1-2):115–121

    Google Scholar 

  58. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–517

    CAS  PubMed  Google Scholar 

  59. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ et al (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115(2):183–204

    CAS  PubMed  Google Scholar 

  60. Saper CB, Cano G, Scammell TE (2005) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493(1):92–98

    CAS  PubMed  Google Scholar 

  61. Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav 40(1):33–40

    CAS  PubMed  Google Scholar 

  62. Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6(4):321–332

    PubMed  Google Scholar 

  63. Liu ZW, Gao XB (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 97(1):837–848

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Blanco-Centurion C, Xu M, Murillo-Rodriguez E, Gerashchenko D, Shiromani AM, Salin-Pascual RJ et al (2006) Adenosine and sleep homeostasis in the Basal forebrain. J Neurosci 26(31):8092–8100

    CAS  PubMed  Google Scholar 

  65. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104(50):20090–20095

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Tappe A, Klugmann M, Luo C, Hirlinger D, Agarwal N, Benrath J et al (2006) Synaptic scaffolding protein Homer1a protects against chronic inflammatory pain. Nat Med 12(6):677–681

    CAS  PubMed  Google Scholar 

  67. Hamaguchi H, Fujimoto K, Kawamoto T, Noshiro M, Maemura K, Takeda N et al (2004) Expression of the gene for Dec2, a basic helix-loop-helix transcription factor, is regulated by a molecular clock system. Biochem J 382(Pt 1):43–50

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J et al (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS ONE 3(7):0002762

    Google Scholar 

  69. He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL Jr et al (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325(5942):866–870

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G (2005) Breakdown of cortical effective connectivity during sleep. Science 309(5744):2228–2232

    CAS  PubMed  Google Scholar 

  71. Hill S, Tononi G (2005) Modeling sleep and wakefulness in the thalamocortical system. J Neurophysiol 93(3):1671–1698

    PubMed  Google Scholar 

  72. Olcese U, Esser SK, Tononi G (2010) Sleep and synaptic renormalization: a computational study. J Neurophysiol 104(6):3476–3493

    PubMed Central  PubMed  Google Scholar 

  73. Esser SK, Hill SL, Tononi G (2007) Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30(12):1617–1630

    PubMed Central  PubMed  Google Scholar 

  74. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G (2007) Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30(12):1631–1642

    PubMed Central  PubMed  Google Scholar 

  75. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M et al (2007) Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30(12):1643–1657

    PubMed Central  PubMed  Google Scholar 

  76. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ et al (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9(9):1169–1176

    CAS  PubMed  Google Scholar 

  77. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995):78–81

    CAS  PubMed  Google Scholar 

  78. Murphy M, Huber R, Esser S, Riedner BA, Massimini M, Ferrarelli F et al (2011) The cortical topography of local sleep. Curr Top Med Chem 11(19):2438–2446

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C et al (2013) Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36(1):59–72

    PubMed Central  PubMed  Google Scholar 

  80. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I et al (2011) Regional slow waves and spindles in human sleep. Neuron 70(1):153–169

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Krueger JM, Tononi G (2011) Local use-dependent sleep; synthesis of the new paradigm. Curr Top Med Chem 11(19):2490–2492

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Picchioni D, Fukunaga M, Carr WS, Braun AR, Balkin TJ, Duyn JH et al (2008) fMRI differences between early and late stage-1 sleep. Neurosci Lett 441(1):81–85

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A et al (2008) Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci U S A. 105(39):15160–15165

    PubMed Central  PubMed  Google Scholar 

  84. Ly JQ, Chellappa SL, Schabus M, Dang-Vu TT, Vandewalle G, Phillips C et al (2013) Neural correlates of sleep onset period assessed by simultaneous EEG/fMRI. Sleep 36:41

    Google Scholar 

  85. Huber R, Maki H, Rosanova M, Casarotto S, Canali P, Casali AG et al (2013) Human cortical excitability increases with time awake. Cereb Cortex 23(2):332–338

    PubMed Central  PubMed  Google Scholar 

  86. Vyazovskiy VV, Faraguna U, Cirelli C, Tononi G (2009) Triggering slow waves during NREM sleep in the rat by intracortical electrical stimulation: effects of sleep/wake history and background activity. J Neurophysiol 101(4):1921–1931

    PubMed Central  PubMed  Google Scholar 

  87. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH et al (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20(21):8138–8143

    CAS  PubMed  Google Scholar 

  88. Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3(20):20

    PubMed Central  PubMed  Google Scholar 

  89. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28(4):395–409

    PubMed  Google Scholar 

  90. Kopp C, Albrecht U, Zheng B, Tobler I (2002) Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16(6):1099–1106

    PubMed  Google Scholar 

  91. Franken P, Thomason R, Heller HC, O’Hara BF (2007) A non-circadian role for clock-genes in sleep homeostasis: a strain comparison. BMC Neurosci 8:87

    PubMed Central  PubMed  Google Scholar 

  92. Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS ONE 6(10):24

    Google Scholar 

  93. Curie T, Mongrain V, Dorsaz S, Mang GM, Emmenegger Y, Franken P (2013) Homeostatic and circadian contribution to EEG and molecular state variables of sleep regulation. Sleep 36(3):311–323

    PubMed Central  PubMed  Google Scholar 

  94. Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):25

    Google Scholar 

  95. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M et al (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2(4):342–346

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26(4):413–415

    PubMed  Google Scholar 

  97. Archer SN, Viola AU, Kyriakopoulou V, von Schantz M, Dijk DJ (2008) Inter-individual differences in habitual sleep timing and entrained phase of endogenous circadian rhythms of BMAL1, PER2 and PER3 mRNA in human leukocytes. Sleep 31(5):608–617

    PubMed Central  PubMed  Google Scholar 

  98. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ et al (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17(7):613–618

    CAS  PubMed  Google Scholar 

  99. Goel N, Banks S, Mignot E, Dinges DF (2009) PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS ONE 4(6):0005874

    Google Scholar 

  100. Lo JC, Groeger JA, Santhi N, Arbon EL, Lazar AS, Hasan S et al (2012) Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS ONE 7(9):24

    Google Scholar 

  101. Viola AU, Chellappa SL, Archer SN, Pugin F, Gotz T, Dijk DJ et al (2012) Interindividual differences in circadian rhythmicity and sleep homeostasis in older people: effect of a PER3 polymorphism. Neurobiol Aging 33(5):14

    Google Scholar 

  102. Chellappa SL, Viola AU, Schmidt C, Bachmann V, Gabel V, Maire M et al (2012) Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3. J Clin Endocrinol Metab 97(3):2011–2391

    Google Scholar 

  103. Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A et al (2011) Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis. J Biol Rhythms 26(3):249–259

    PubMed  Google Scholar 

  104. Riksen NP, Franke B, van den Broek P, Naber M, Smits P, Rongen GA (2008) The 22G > A polymorphism in the adenosine deaminase gene impairs catalytic function but does not affect reactive hyperaemia in humans in vivo. Pharmacogenet Genomics 18(10):843–846

    CAS  PubMed  Google Scholar 

  105. Retey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH et al (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci U S A 102(43):15676–15681

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Bachmann V, Klaus F, Bodenmann S, Schafer N, Brugger P, Huber S et al (2012) Functional ADA polymorphism increases sleep depth and reduces vigilant attention in humans. Cereb Cortex 22(4):962–970

    PubMed  Google Scholar 

  107. Franken P, Chollet D, Tafti M (2001) The homeostatic regulation of sleep need is under genetic control. J Neurosci 21(8):2610–2621

    CAS  PubMed  Google Scholar 

  108. Okada T, Mochizuki T, Huang ZL, Eguchi N, Sugita Y, Urade Y et al (2003) Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochem Biophys Res Commun 312(1):29–34

    CAS  PubMed  Google Scholar 

  109. Karoum F, Chrapusta SJ, Egan MF (1994) 3-Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 63(3):972–979

    CAS  PubMed  Google Scholar 

  110. Landolt HP (2008) Genotype-dependent differences in sleep, vigilance, and response to stimulants. Curr Pharm Des 14(32):3396–3407

    CAS  PubMed  Google Scholar 

  111. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S et al (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75(5):807–821

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Slifstein M, Kolachana B, Simpson EH, Tabares P, Cheng B, Duvall M et al (2008) COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Mol Psychiatry 13(8):821–827

    CAS  PubMed  Google Scholar 

  113. Akil M, Kolachana BS, Rothmond DA, Hyde TM, Weinberger DR, Kleinman JE (2003) Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 23(6):2008–2013

    CAS  PubMed  Google Scholar 

  114. Bodenmann S, Rusterholz T, Durr R, Stoll C, Bachmann V, Geissler E et al (2009) The functional Val158Met polymorphism of COMT predicts interindividual differences in brain alpha oscillations in young men. J Neurosci 29(35):10855–10862

    CAS  PubMed  Google Scholar 

  115. Wishart HA, Roth RM, Saykin AJ, Rhodes CH, Tsongalis GJ, Pattin KA et al (2011) COMT Val158Met genotype and individual differences in executive function in healthy adults. J Int Neuropsychol Soc 17(1):174–180

    PubMed Central  PubMed  Google Scholar 

  116. Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30(2):129–139

    PubMed  Google Scholar 

  117. Lu B (2003) Pro-region of neurotrophins: role in synaptic modulation. Neuron 39(5):735–738

    CAS  PubMed  Google Scholar 

  118. Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22(17):7453–7461

    CAS  PubMed  Google Scholar 

  119. Akaneya Y, Tsumoto T, Kinoshita S, Hatanaka H (1997) Brain-derived neurotrophic factor enhances long-term potentiation in rat visual cortex. J Neurosci 17(17):6707–6716

    CAS  PubMed  Google Scholar 

  120. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28(15):4088–4095

    CAS  PubMed  Google Scholar 

  121. Bachmann V, Klein C, Bodenmann S, Schafer N, Berger W, Brugger P et al (2012) The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35(3):335–344

    PubMed Central  PubMed  Google Scholar 

  122. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Cajochen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Chellappa, S.L., Schmidt, C., Cajochen, C. (2014). Neurophysiology of Sleep and Wakefulness. In: Garbarino, S., Nobili, L., Costa, G. (eds) Sleepiness and Human Impact Assessment. Springer, Milano. https://doi.org/10.1007/978-88-470-5388-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5388-5_3

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5387-8

  • Online ISBN: 978-88-470-5388-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics