Skip to main content

Rhizosphere Microbes: Potassium Solubilization and Crop Productivity – Present and Future Aspects

  • Chapter
  • First Online:
Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

The plant rhizosphere harbor array of potassium-solubilizing microbes (KSMs), which solubilize the insoluble and inaccessible potassium (K) to accessible forms of potassium for plant uptake and transport, is one of the inevitable elements for growth and yield. The process of potassium solubilization is performed by specific rhizosphere microbes, which include bacteria and fungi; the prominent are Bacillus sp. (B. megaterium, B. mucilaginosus, B. edaphicus, B. circulans, Acidithiobacillus ferrooxidans, Pseudomonas putida, Arthrobacter sp., and Paenibacillus sp.) Aspergillus spp., and Aspergillus terreus. The agricultural soil particulates contain minerals such as orthoclase, illite, biotite, feldspar, and mica which contain potassium, though this is not available to the plants due to its immobilized form. Intermittently, potassium is an important element after N and P in soil chemistry; therefore, the rhizosphere microbes play a significant role in mobilizing the unavailable form of potassium to the plant roots. The potential rhizosphere K-solubilizing microbes such as Pseudomonas, Bacillus, and Aspergillus excrete organic acids, which solubilize the unavailable potassium and make available to plant roots. Till date, most of the work has been done on nitrogen-fixing and phosphate-solubilizing microbes; moreover, the available biofertilizer with solubilized K (readily available) needs more attention at commercial scale. The current chapter addresses the information gaps related to potassium-solubilizing/potassium-mobilizing microorganisms in soil and analyzing current and future aspects of potassium-solubilizing microbes for the crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257. Availability and growth of eggplant. Res J Agric Boil Sci. 1(2): 176–180

    Google Scholar 

  • Badr MA, Shafei AM, Sharaf El-Deen SH (2006) The dissolution of K and phosphorus bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Res J Agric Biol Sci 2:5–11

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7(30):4250–4259

    Article  Google Scholar 

  • Baligar VC (1985) Potassium uptake by plants, as characterized by root density, species and K/Rb ratio. Plant Soil 85:43–53

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2008) Influence of potassium solubilizing microorganism (Bacillus mucilaginosus) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers.) grown under two Alfisols. Plant Soil 317:235–255

    Article  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province, Vietnam. Am J Life Sci 1(3):88–92

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Hofflich G (2004) Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in an arid region of Uzbekistan. J Arid Environ 56:293–301

    Article  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus Sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh. India Res Rev J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Boil Sci 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani K, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hassan EA, Hassan EA, Hamad EH (2010) Microbial solubilization of phosphate – potassium rocks and their effect on khella (Ammi visnaga) growth. Ann Agric Sci (Cairo) 55:37–53

    Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167:493–499

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pur Appl Microbiol 9(1):715–724

    Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Mineral 25:440–448

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Petrol Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2007) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Maathuis FJM, Sanders D (1997) Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot 48:451–458

    Article  CAS  PubMed  Google Scholar 

  • MagriI MMR, AvansiniI SH, Lopes-AssadI ML, Tauk-TornisieloII SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55(4):577–582

    Article  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81: 340–347

    Google Scholar 

  • Memon YM, Fergus IF, Hughes JD, Page DW (1988) Utilization of non-exchangeable soil potassium in relation to soil types, plant species and stage of growth. Aust J Soil Res 26:489–496

    Article  CAS  Google Scholar 

  • Mikhailouskaya N, Tcherhysh A (2005) K-mobilizing bacteria and their effect on wheat yield. Lat J Agron 8:154–157

    Google Scholar 

  • Pettigrew WT (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant 133:670–681

    Article  CAS  PubMed  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoschus Esculentus). Int J Agric Sci 3:181–188

    Google Scholar 

  • Rogers JR, Bennett PC, Choi WJ (1998) Feldspars as a source of nutrients for microorganisms. Am Miner 83:1532–1540

    Article  CAS  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21:118–124

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, He LY, Huang WY (2002) The conditions of releasing potassium by a silicate-dissolving bacterial strain NBT. Agric Sci China 1:662–666

    Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chili and cotton. Agric Sci China 2:40–41

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(5):1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Biswas DR, Marwaha TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum l.): a hydroponics study under phytotron growth chamber. J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Styriakova I, Styriak I, Hradil D, Bezdicka P (2003) The release of iron bearing minerals and dissolution of feldspar by heterophic bacteria of Bacillus species. Ceram Silic 47(1):20–26

    CAS  Google Scholar 

  • Sugumaran P, Janarthanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Supanjani HHS, Jung JS, Lee KD (2006) Rock phosphate-potassium and rock-solubilising bacteria as alternative, sustainable fertilizers. Agron Sustain Dev 26:233–240

    Article  CAS  Google Scholar 

  • Valmorbida J, Boaro CSF (2007) Growth and development of Mentha piperita L. in nutrient solution as affected by rates of potassium. Braz Arch Biol Technol 50:379–384

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xeng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  Google Scholar 

  • Yang ML, Yan CX, Si SD (2014) Effect of potassium-solubilizing bacteria-mineral contact mode on decomposition behavior of potassium-rich shale. Chin J Nonferrous Met 24:48–52

    CAS  Google Scholar 

  • Yuan L, Wang Z, Fang D, Shun H, Huang J (2000) Bio-mobilization of potassium from clay minerals: II. By ectomycorrhizal fungi. Pedosphere 10:347–354

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agron Soil Sci 59(12):1713–1723

    Article  Google Scholar 

  • Zeng X, Liu X, Tang J, Hu S, Jiang P, Li W, Xu L (2012) Characterization and potassium solubilizing ability of Bacillus circulans Z1-3. Adv Sci Lett 10:173–176

    Article  CAS  Google Scholar 

  • Zhanga C, Konga F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture – status and perspectives. J Plant Physiol 171(9):656–669

    Article  PubMed  Google Scholar 

  • Zorba C, Senbayramb M, Peiterc E (2013) Potassium in agriculture -status and perspectives. J Plant Physio. http://dx.doi.org/10.1016/j.jplph.2013.08.008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Teotia, P., Kumar, V., Kumar, M., Shrivastava, N., Varma, A. (2016). Rhizosphere Microbes: Potassium Solubilization and Crop Productivity – Present and Future Aspects. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_22

Download citation

Publish with us

Policies and ethics