Skip to main content

Potassium and Its Role in Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Potassium Solubilizing Microorganisms for Sustainable Agriculture

Abstract

Apart from two major components nitrogen and phosphorous, potassium is the third essential macronutrient required for the growth and metabolism of plant, and its deficiency in plants causes poorly developed roots, slow growth, low resistance to disease, delayed maturity, small seed production and lower yields. The concentration of soluble K in soil is very small as maximum part of K exists in insoluble form. Silt, clay and sand are important components of soil in earth and biggest reservoir of potassium. Most common deposits of potassium are feldspar and mica. The available K level in soil dropped in the last decade due to rapid development of agriculture and application of imbalanced fertilizers. Potassium is released when these minerals are slowly weathered, or, alternatively, it can be solubilized by some beneficial microorganisms and made available for plants. Several bacterial and fungal strains have been identified for their ability of high potassium solubilization. Various species of Pisolithus, Cenococcum, Piloderma, Bacillus, Paenibacillus, Acidithiobacillus, Pseudomonas, Burkholderia, Aspergillus and Clostridium have been reported to release large amount of potassium from different minerals and enhance the productivity of many crops. Co-inoculation of PSMs and KSMs in conjunction with direct application of rock P and K minerals into the soil has been reported to increase N, P and K uptake, photosynthesis and the yield of plants grown in P- and K-limited soils. Thus, identification of microbial strains capable of solubilizing potassium minerals can rapidly conserve our existing resources and escape environmental pollution hazards caused by heavy application of chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrov VG, Blagodyr RN, Iiiev IP (1967) Liberation of phosphoric acid from apatite by silicate bacteria. Mikrobiol Zh (Kiev) 29:111–114

    CAS  Google Scholar 

  • Alexander M (1985) Introduction to soil microbiology. Wiley, New York, pp 382–385

    Google Scholar 

  • Alfaro MA, Jarvis SC, Gregory PJ (2003) The effect of grassland soil managements on soil potassium availability. J Soil Sci Plant Nutr 3(2):31–41

    Google Scholar 

  • Amtmann A, Hammond JP, Armengaud P, White PJ (2006) Nutrient sensing and signalling in plants: potassium and phosphorus. Adv Bot Res 43:209–257

    Article  CAS  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Andrist-Rangel Y, Edwards AC, Hillier S, Oborn I (2007) Long-term K dynamics in organic and conventional mixed cropping systems as related to management and soil properties. Agric Ecosyst Environ 122:413–426

    Article  CAS  Google Scholar 

  • Appanna VD, Preston CM (1987) Manganese elicits the synthesis of a novel exopolysaccharide in an arctic Rhizobium. FEBS Lett 215:79–82

    Article  CAS  Google Scholar 

  • Archana DS, Nandish MS, Savalagi VP, Alagawadi AR (2013) Characterization of potassium solubilizing bacteria (KSB) from rhizosphere soil. Bioinfolet 10:248–257

    Google Scholar 

  • Arnold PW (1963) Potassium in partially weathered soils. In: Proceedings of the first regional conference of the International Potash Institute, Berne, pp 11–17

    Google Scholar 

  • Aseri GK, Jain N, Panwar J, Rao AV, Meghwalc PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117(2):130–135

    Article  Google Scholar 

  • Ashraf MA, Ahmad MSA, Ashraf M, Al-Qurainy F, Ashraf MY (2011) Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62:25–38

    Article  CAS  Google Scholar 

  • Avakyan ZA (1984) Silicon compounds in solution bacteria quartz degradation. Mikrobiology 54:301–307

    Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Banfield JF, Zhang H (2001) Nanoparticles in the environment. Rev Mineral Geochem 44:1–58

    Article  CAS  Google Scholar 

  • Banfield J, Barker W, Welch S, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci 96:3404–3411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker WW, Welch SA, Banfield JF (1997) Geomicrobiology of silicate mineral weathering. Min Soc Am Rev Mineral 35:391–428

    CAS  Google Scholar 

  • Barker WW, Welch SA, Chu S, Banfield JF (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Min 83:1551–1563

    Article  CAS  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). LAMBERT Academic Publishing, Germany, ISBN-13:978-3659298424

    Google Scholar 

  • Bauerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew Chem Int 42:614–641

    Article  CAS  Google Scholar 

  • Beaton JD, Sekhon GS (1985) Potassium nutrition of wheat and other small grains. In: Munson RD (ed) Potassium in agriculture. ASA, Madison

    Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manag 8(62A):149–150

    Article  Google Scholar 

  • Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, N.J: Prentice Hall

    Google Scholar 

  • Berthelin J, Belgy G (1979) Microbial degradation of phyllosilicates during simulated podzolization. Geoderma 21:297–310

    Article  CAS  Google Scholar 

  • Bertsch PM, Thomas GW (1985) Potassium status of temperate region soils. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 131–162

    Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  CAS  PubMed  Google Scholar 

  • Bohra JS, Doerffling K (1993) Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant Soil 152:299–303

    Article  Google Scholar 

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Callot G, Maurette M, Pottier L, Dubois A (1987) Biogenic etching of microfractures in amorphous and crystalline silicates. Nat (Lond) 328:147–149

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral-weathering and to mineral nutrition in trees, a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csatho P (1991) Effect of NPK-fertilization and split application of nitrogen on lodging due to windstorm and harvestable grain yield of maize. Acta Agron Hung 40(3–4):281–294

    CAS  Google Scholar 

  • Cuellar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61:58–69

    Article  CAS  PubMed  Google Scholar 

  • Datta SK, Mikkelsen DS (1985) Potassium nutrition of rice. In: Munson RD (ed) Potassium in agriculture. ASA, Madison

    Google Scholar 

  • Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, Yang DU, Lee OR, Lee S, Yang DC (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ J Plant Physiol 59:318–325

    Article  CAS  Google Scholar 

  • Dornieden T, Gorbushina AA, Krumbein WE (1997) Changes in physical properties of marble by fungal growth. Int J Restor Build Mon 3:441–456

    Google Scholar 

  • During C (1984) Fertilizers and soils in New Zealand, 3rd revised edn. Government Printer, Wellington, pp 355

    Google Scholar 

  • Egilla JN, Davies FT, Drew MC (2001) Effect of potassium on drought resistance of Hibiscus rosa-sinensis cv. Leprechaun: plant growth, leaf macro- and micronutrient content and root longevity. Plant Soil 229:213–224

    Article  CAS  Google Scholar 

  • Egilla JN, Davies FT, Boutton TW (2005) Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43:135–140

    Article  CAS  Google Scholar 

  • Etienne S, Dupont J (2002) Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations. Earth Surf Proc Land 27:737–748

    Article  Google Scholar 

  • Eweda WE, Selim SM, Mostafa MI, Dalia A, El-Fattah A (2007) Use of Bacillus circulans as bio-accelerator enriching composted agricultural wastes É- identification and utilization of the Aust. J Basic Appl Sci 2(1):68–81

    Google Scholar 

  • Fairhurst TH, Witt C, Buresh RJ, Dobermann A (2007) Rice: a practical guide to nutrient management. International Rice Research Institute, International Plant Nutrition Institute, and International Potash Institute, pp 89

    Google Scholar 

  • Fieldes M, Swindale LD (1954) Chemical weathering of silicates in soil formation. N Z J Sci Tech B36:140–154

    Google Scholar 

  • Foyer CH, Vanacker H, Gomez LD, Harbinson J (2002) Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol Biochem 40:659–668

    Article  CAS  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Galmes J, Pou A, Alsina MM, Tomas M, Medrano H, Flexas J (2007) Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 226:671–681

    Article  CAS  PubMed  Google Scholar 

  • Gething PA (1990) Potassium and water relationships. In: Potash facts. IPI, Bern Girgis, MGZ

    Google Scholar 

  • Girgis MGZ (2006) Response of wheat to inoculation with phosphate and potassium mobilizers and organic amendment. Ann Agric Sci Ain Shams Univ Cairo 51(1):85–100

    Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and/or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–112

    Article  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on rocks. Environ Microbiol 9(7):1613–1631

    Article  CAS  PubMed  Google Scholar 

  • Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7:299–306

    Article  Google Scholar 

  • Gundala PB, Chinthala P, Sreenivasulu B (2013) A new facultative alkaliphilic, potassium solubilizing, Bacillus sp. SVUNM9 isolated from mica cores of Nellore District, Andhra Pradesh. India Res Rev J Microbiol Biotechnol 2(1):1–7

    Google Scholar 

  • Hakerlerker H, Oktay M, Eryuce N, Yagmur B (1997) Effect of potassium sources on the chilling tolerance of some vegetable seedlings grown in hotbeds. In: Proceedings of Regional Workshop of IPI, held at Bornova, Izmir, Turkey. IPI, Basel, pp 353–359

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1(2):176–180

    Google Scholar 

  • Han HS, Supanjani E, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Harley AD, Gilkes RJ (2000) Factors influencing the release of plant nutrient elements from silicates rock powder: a geochemical overview. Nutr Cycl Agroecosyst 56:11–36

    Article  CAS  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 60:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Huntington TG, Hooper RP, Johnson CE, Aulenbach BT, Cappellato R, Blum AE (2000) Calcium depletion in a south eastern United States forest ecosystem. Soil Sci Soc Am J 64:1845–1858

    Article  CAS  Google Scholar 

  • Indian Minerals Yearbook (2011) (Part-II) 50th Edition, Potash, Indian Bureau of Mines

    Google Scholar 

  • Jain R, Saxena J, Sharma V (2014) Differential effects of immobilized and free forms of phosphate solubilizing fungal strains on the growth and phosphorus uptake of mung bean plants. Ann Microbiol 64(4):1523–1534

    Article  CAS  Google Scholar 

  • Jha A, Sharma D, Saxena J (2012) Effect of single and dual phosphate solubilizing bacterial strain inoculations on overall growth of mung bean plants. Arch Agron Soil Sci 58:967–981

    Article  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage. Plant Cell Physiol 42:1265–1273

    Article  CAS  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jongmans AG, Breemen N, Lundstrom US, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kaldenhoff R, Ribas-Carbo M, Flexas J, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski BE, Liermann LJ, Givens S, Brantley SL (2000) Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches. Chem Geol 169:357–370

    Article  CAS  Google Scholar 

  • Kanai S, Moghaieb RE, El-Shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K (2011) Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci 180:368–374

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Kafkafi U (2002) Potassium and abiotic stresses in plants. In: Pasricha NS, Bansal SK (eds) Potassium for sustainable crop production. Potash Institute of India, Gurgaon, pp 233–251

    Google Scholar 

  • Kayser M, Isselstein J (2005) Potassium cycling and losses in grassland systems: a review. Grass Forage Sci 60:213–224

    Article  CAS  Google Scholar 

  • Khawilkar SA, Ramteke JR (1993) Response of applied K in cereals in Maharashtra. Agric: 5;84–96

    Google Scholar 

  • Khurana GP, Bhaya GP (1990) Effect of potash on wheat irrigated with nitrate waters. Indian J Agron 35:429–431

    Google Scholar 

  • Kirkby EA, LeBot J, Adamowicz S, Romheld V (2009) Nitrogen in physiology – an agronomic perspective and implications for the use of different nitrogen forms. International Fertiliser Society, Cambridge

    Google Scholar 

  • Kirkman JH, Basker A, Surapaneni A, MacGregor AN (1994) Potassium in the soils of New Zealand – a review. N Z J Agric Res 37:207–227

    Article  CAS  Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121

    Article  CAS  Google Scholar 

  • Krishnamurti GSR, Huang PM (1988) Kinetics of manganese released from selected manganese oxide minerals as influenced by potassium chloride. Soil Sci 146:326–334

    Article  CAS  Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Lack AJ, Evans DE (2005) Instant notes in plant biology, 2nd edn. Taylor and Francis, Oxford

    Google Scholar 

  • Lauchli A, Pflueger R (1979) Potassium transport through plant cell membranes and metabolic role of potassium in plants. In: Proceedings of the 11th congress on potassium research – review and trends, pp 111–163

    Google Scholar 

  • Leigh RA (2001) Potassium homeostasis and membrane transport. J Plant Nutr Soil Sci 164:193–198

    Article  CAS  Google Scholar 

  • Li FC, Li S, Yang YZ, Cheng LJ (2006) Advances in the study of weathering products of primary silicate minerals, exemplified by mica and feldspar. Acta Petrol Min 25:440–448

    CAS  Google Scholar 

  • Lian BA (1998) A study on how silicate bacteria GY92 dissolves potassium from illite. Acta Min Sin 18(2):234–238

    CAS  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Min Sin 22:179–183

    CAS  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding XS, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72(1):87–98

    Article  CAS  Google Scholar 

  • Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602

    Article  CAS  Google Scholar 

  • Liermann LJ, Guynn RL, Anbar A, Brantley SL (2005) Production of a molybdophore during metal-targeted dissolution of silicates by soil bacteria. Chem Geol 220(3–4):285–302

    Article  CAS  Google Scholar 

  • Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160:323–329

    Article  CAS  PubMed  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Lindhauer MG (1985) Influence of K nutrition and drought on water relations and growth of sunflower (Helianthus-annuus L.). J Plant Nutr Soil Sci 148:654–669

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Li-yang M, Xiao-yan CAO, De-si S (2014) Effect of potassium solubilizing bacteria-mineral contact mode on decomposition behavior of potassium-rich shale. C J Non Ferr Metal 24:1099–1109

    Google Scholar 

  • Maathuis JM, Ichida AM, Sanders D, Schroeder JI (1997) Role of higher plant K+ channels. Plant Physiol 114:1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder AK, Govindarajan B, Sharma T, Ray HS, Rao TC (1995) An empirical model for chloridising-roasting of potassium in glauconitic sandstone. Int J Miner Process 43:81–89

    Article  CAS  Google Scholar 

  • Malavolta E (1985) Potassium status of tropical and subtropical region soils. In: Munson RD (ed) Potassium in agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 163–200

    Google Scholar 

  • Malinovskaya IM (1988) A method for the determination of the ability of bacterial polysaccharides to sorb silicic acid ions. Mikrobiol Zhurn 57:84–86

    Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus Mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiology 59:49–55

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Marschner H (2010) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 178–189

    Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins: a molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • McAfee J (2008) Potassium, a key nutrient for plant growth. Department of Soil and Crop Sciences: http://jimmcafee.tamu.edu/files/potassium

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015a) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mengel K (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, pp 481–509

    Book  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Inst, Bern, pp 200–210

    Google Scholar 

  • Metson AJ (1968) Potassium in: soils of New Zealand. Part 2, New Zealand soil bureau bulletin 26. Government Printer, Wellington, pp 82–95

    Google Scholar 

  • Metson AJ (1980) Potassium in New Zealand soils. Department of Scientific and Industrial Research. New Zealand Soil Bureau report no. 38, pp 61. New Zeland

    Google Scholar 

  • Mikkelsen RL, Bruulsema TW (2005) Fertilizer use for horticultural crops in the US during the 20th century. Hort Technol 15:24–30

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Moody PW, Bell MJ (2006) Availability of soil potassium and diagnostic soil tests. Aust J Soil Res 44:265–275

    Article  CAS  Google Scholar 

  • Muentz A (1890) Surla decomposition desroches etla formation de la terre arable. C R Acad Sci 110:1370–1372

    Google Scholar 

  • Nahas E, Banzatto DA, Assis LC (1990) Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil Biol Biochem 22:1097–1101

    Article  CAS  Google Scholar 

  • Neaman A, Chorover J, Brantley SL (2005) Implication of the evolution of organic acid moieties for basalt weathering over ecological time. Am J Sci 305:147–185

    Article  CAS  Google Scholar 

  • Nienow JA, Friedman EI (1993) Terrestrial lithophytic (rock) communities. In: Friedman EI (ed) Antarctic microbiology, Wiley series in ecological and applied microbiology (Wiley series in ecological and applied microbiology). Wiley-Liss, pp 342–412, 644 pp

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oerke EC, Dehne HW (2004) Safeguarding production-losses in major crops and the role of crop protection. Crop Prot 23:275–285

    Article  Google Scholar 

  • Parfitt RL (1992) Potassium-calcium exchange in some New Zealand soils. Aust J Soil Res 30:145–158

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safe 60:324–349

    Article  CAS  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by ectomycorrhizal fungi. II. The effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    Article  CAS  Google Scholar 

  • Park J, Sanford RA, Bethke CM (2009) Microbial activity and chemical weathering in the Middendorf Aquifer, South Carolina. Chem Geol 258:232–241

    Article  CAS  Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3(1):25–31

    Google Scholar 

  • Perrenoud S (1990) Potassium and plant health, 2nd edn. International Potash Institute, Bern, pp 8–10

    Google Scholar 

  • Pier PA, Berkowitz GA (1987) Modulation of water stress effects on photosynthesis by altered leaf K+. Plant Physiol 85:655–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati KB, Modi HA (2012) Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIB Tech J Microbiol 1:8–14

    Google Scholar 

  • Prajapati K, Modi HA (2014) The study of shelf life of potassium solubilizing microorganisms for liquid biofertilizer. Paripex Ind J Res 3:13–14

    Article  Google Scholar 

  • Prasad D, Singh R, Singh A (2010) Management of sheath blight of rice with integrated nutrients. Indian Phytopathol 63:11–15

    CAS  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  CAS  PubMed  Google Scholar 

  • Rajawat MVS, Singh S, Singh G, Saxena AK (2012) Isolation and characterization of K-solubilizing bacteria isolated from different rhizospheric soil. In: Proceeding of 53rd annual conference of association of microbiologists of India, pp 124

    Google Scholar 

  • Rao SC, Bansal SK, Subba Rao A, Takkar PN (1998) Potassium desorption kinetics of major benchmark soil series of India. J Ind Soc Soil Sci 46(3):357–362

    Google Scholar 

  • Rehm GW, Sorensen RC (1985) Effects of potassium and magnesium applied for corn grown on an irrigated sandy soil. Soil Sci Soc Am J 49:1446–1450

    Article  CAS  Google Scholar 

  • Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manes Y, Mather DE (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  CAS  PubMed  Google Scholar 

  • Richter DD, Markewitz D (1995) How deep is soil? Bioscience 45:600–609

    Article  Google Scholar 

  • Richter DD, Oh NH (2002) Biological factors affecting saprolite formation. Abstracts with Programs – Geological Society of America, Paper No. 48-4

    Google Scholar 

  • Rozanova EP (1986) Leaching of glass and during microbiological oxidation of oil. Microbiology 55:787–791

    CAS  Google Scholar 

  • Sahin F, Cakmakci R, Kantar F (2004) Sugar beet and barley yields in relation to inoculation with N -fixing and phosphate solubilizing bacteria. Plant Soil 2(265):123–129

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21(2):118–124

    Google Scholar 

  • Sarwar M (2012) Effects of potassium fertilization on population build up of rice stem borers (lepidopteron pests) and rice (Oryza sativa L.) yield. J Cereal Oilseeds 3:6–9

    Article  CAS  Google Scholar 

  • Schroeder D (1974) Relationships between soil potassium and the potassium nutrition of the plant. In: Potassium research and agricultural production. Proceedings of the 10th congress of the international Potash Institue, pp 53–63

    Google Scholar 

  • Sen Gupta A, Berkowitz GA, Pier PA (1989) Maintenance of photosynthesis at low leaf water potential in wheat. Plant Physiol 89:1358–1365

    Article  Google Scholar 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253:1–34

    Article  CAS  Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol Appl Sci 3(9):622–629

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Sharma SR, Kolte SJ (1994) Effect of soil-applied NPK fertilizers on severity of black spot disease (Alternaria brassicae) and yield of oilseed rape. Plant Soil 167:313–320

    Article  CAS  Google Scholar 

  • Sharma KD, Nandwal AS, Kuhad MS (1996) Potassium effects on CO2 exchange, ARA and yield of cluster bean cultivars under water stress. J Pot Res 12:412–423

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, Huang WY (2002) Mechanism of potassium release from feldspar affected by the strain NBT of silicate bacterium. Acta Pedol Sin 39(6):863–871

    CAS  Google Scholar 

  • Sheng XF, Zhao F, He H, Qiu G, Chen L (2008) Isolation, characterization of silicate mineral solubilizing Bacillus globisporus Q12 from the surface of weathered feldspar. Can J Microbiol 54:1064–1068

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42:686–693

    Article  CAS  PubMed  Google Scholar 

  • Southam G (2000) Bacterial surface-mediated mineral formation. In: Lovley DR (ed) Environmental microbe-mineral interactions. ASM Press, Washington, DC, pp 257–276

    Chapter  Google Scholar 

  • Sparks DL (1987) Potassium dynamics in soils. Adv Soil Sci 6:1–63

    Article  CAS  Google Scholar 

  • Sparks DL (2000) Bioavailability of soil potassium. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp D38–D52

    Google Scholar 

  • Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD et al (eds) Potassium in agriculture. ASA, Madison, pp 201–276

    Google Scholar 

  • Sparks DL, Martens DC, Zelazny LW (1980) Plant uptake and leaching of applied and indigenous potassium in Dothan soils. Agron J 72:551–555

    Article  CAS  Google Scholar 

  • Staley JT, Jackson MJ, Palmer FE, Adams JB, Borns DJ, Curtiss B, Taylor-George S (1983) Desert varnish coatings and microcolonial fungi on rocks of the Gibson and Great Victorian deserts, Australia. BMR J Aust Geol Geophys 8:83–87

    CAS  Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    Article  CAS  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting Mediterranean marbles and limestones. Geomicrobiol J 14(3):219–230

    Article  Google Scholar 

  • Steudle E (2000) Water uptake by plant roots: an integration of views. Plant Soil 226:45–56

    Article  CAS  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plantarum 126:45–51

    Article  CAS  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995) Textual and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  CAS  Google Scholar 

  • Tiwari HS, Agarwal RM, Bhatt RK (1998) Photosynthesis, stomatal resistance and related characters as influenced by potassium under normal water supply and water stress conditions in rice (Oryza sativa L.). Indian J Plant Physi 3(4):314–316

    Google Scholar 

  • Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P (2010) Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol 10(1):172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA (1996) Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    Article  CAS  PubMed  Google Scholar 

  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL (1994) Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microb Ecol 27:241–251

    Article  CAS  PubMed  Google Scholar 

  • Vassileva M, Vassilev N, Azcon R (1998) Rock phosphate solubilization by Aspergillus niger on olive cake-based medium and its further application in a soil-plant system. World J Microb Biot 14:281–284

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wallander H, Tonie W (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Wang XM, Li WQ, Li MY, Welti R (2006) Profiling lipid changes in plant response to low temperatures. Physiol Plantarum 126:90–96

    Article  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  CAS  Google Scholar 

  • Wegner L (2010) Oxygen transport in waterlogged plants. In: Mancuso S, Shabala S (eds) Waterlogging signaling and tolerance in plants. Springer, Berlin/Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Welch LF, Flannery RL (1985) Potassium nutrition of corn. In: Munson RD (ed) Potassium in agriculture. ASA, Madison

    Google Scholar 

  • Welch SA, Barker WW, Barfield JF (1999) Microbial extracellular polysaccharides and plagioclase dissolution. Geochim Cosmochim Acta 63:1405–1419

    Article  CAS  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Chung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Wyn Jones RG, Brady CJ, Speirs J (1979) Ionic and osmotic relations in plant cells. In: Laidman DC, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic, New York, pp 63–103

    Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav DS, Goyal AK, Vats BK (1999) Effect of potassium in Eleusine coracana (L.) Gaertn under moisture stress conditions. J Potassium Res 15(1–4):131–134

    Google Scholar 

  • Yadav VP, Sharma T, Saxena VK (2000) Dissolution kinetics of potassium from glauconitic sandstone in acid lixiviant. Int J Miner Process 60:15–36

    Article  CAS  Google Scholar 

  • Yuan L, Fang DH, Wang ZH, Shun H, Huang JG (2000) Bio-mobilization of potassium from clay minerals: I. By ectomycorrhizas. Pedosphere 10:339–346

    Google Scholar 

  • Yuan L, Huang JG, Li XL, Christie P (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361

    Article  CAS  Google Scholar 

  • Zahra MK, Monib MS, Abdel-Al I, Heggo A (1984) Significance of soil inoculation with silicate bacteria. Zentralbl Mikrobiol 139(5):349–357

    CAS  Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agro Soil Sci 77:7569

    Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

  • Zhang QC, Wang GH, Feng YK, Qian P, Schoe-nau JJ (2011) Effect of potassium fertilization on soil potassium pools and rice response in an intensive cropping system in China. J Plant Nutr Soil Sci 174:73–80

    Article  CAS  Google Scholar 

  • Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006) Regulating the drought responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transinactive DRE binding factors in Brassica napus. J Biol Chem 281:10752–10759

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Sheng X, Huang Z, He L (2008) Isolation of mineral potassium-solubilizing bacterial strains from agricultural soils in Shandong Province. Biodivers Sci 16:593–600

    Article  CAS  Google Scholar 

  • www.ncagr.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Rawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Rawat, J., Sanwal, P., Saxena, J. (2016). Potassium and Its Role in Sustainable Agriculture. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_17

Download citation

Publish with us

Policies and ethics