Skip to main content

KSM Soil Diversity and Mineral Solubilization, in Relation to Crop Production and Molecular Mechanism

  • Chapter
  • First Online:

Abstract

Bio-weathering and biomineralization are geochemical processes of the decomposition of rocks and minerals which are mediated by the living organisms. These processes play a fundamental role in the release of nutrients from rocks and minerals. Microorganisms, higher plants, and animals can weather rock aggregates through biomechanical and biochemical attack. Among such microbes, the information especially on phosphate solubilizers has been well documented; however, there are very few studies on the use of potassium-solubilizing microbes (KSMs) for the release of the native soil K. The strains of Pseudomonas, Bacillus, Aspergillus, Penicillium, etc. are some known K solubilizers. The principal mechanism for the microbe-mediated release of potassium from minerals is through the production of organic acids. A short overview of the KSMs and their effect of K uptake and crop growth are presented herein. K dynamics in soils and its availability to plants, metabolic pathways effecting the release of organic acids by KSMs, are covered. The aspects of immobilization of KSMs for the ease of application and the role of VAM in K mobilization have also been explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abou-el-Seoud, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea mays) under calcareous soil conditions. Saudi J Biol Sci 19:55–63

    Article  CAS  PubMed  Google Scholar 

  • Ahuja A, D’Souza SF (2009) Bioprocess for solubilization of rock phosphate on starch based medium by Paecilomyces marquandii immobilized on polyurethane foam. Appl Biochem Biotechnol 152:1–5

    Article  CAS  PubMed  Google Scholar 

  • Alves L, Oliveira VL, Filho GNS (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Braz J Microbiol 41:676–684

    Article  CAS  Google Scholar 

  • Argelis DT, Gonzala DA, Vizcaino C, Gartia MT (1993) Biochemical mechanism of stone alteration carried out by filamentous fungi living in monuments. Biogeochemistry 19:129–147

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Bakker MR, George E, Turpault MP, Zhang J, Zeller B (2004) Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions. Plant Soil 266:247–259

    Article  CAS  Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Dickinson JT, Stevens F, Li CY, Bormann BT (2008a) Biotite weathering and nutrient uptake by ectomycorrhizal fungus Suillus tomentosus, in liquid culture experiments. Geochim Cosmochim Acta 72:2601–2618

    Article  CAS  Google Scholar 

  • Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008b) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167

    Article  Google Scholar 

  • Barré P, Montagnier C, Chenu C, Abbadie L, Velde B (2008) Clay minerals as a soil potassium reservoir: observation and quantification through X-ray diffraction. Plant Soil 302:213–220

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2009) Influence of potassium solubilizing microorganism (Bacillus mucilaginous) and waste mica on potassium uptake dynamics by sudan grass (Sorghum vulgare Pers) grown under two Alfisols. Plant Soil 317:235–255

    Article  CAS  Google Scholar 

  • Basak BB, Biswas DR (2010) Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biol Fertil Soils 46:641–648

    Article  Google Scholar 

  • Bennett PC, Choi WJ, Rogera JR (1998) Microbial destruction of feldspars. Mineral Manag 8:149–150

    Article  Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    Article  CAS  Google Scholar 

  • Berthelin J, Leyval C (1982) Ability of symbiotic and non-symbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant Soil 68:369–377

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA special publication no 54. Madison 8–13

    Google Scholar 

  • Biswas DR (2011) Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an inceptisol of Indo-gangetic plains of India. Nutr Cycl Agroecosyst 89:15–30

    Article  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao YP, Xu YT, Li XL (1991) The distribution of potassium is rhizosphere of wheat. Acta Agric Univ Pekin 17:69–74

    Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Chen SZ, Low PF, Roth CB (1987) Relation between potassium fixation and the oxidization state of octahedral iron. Soil Sci Soc Am J 51:82–86

    Article  CAS  Google Scholar 

  • Chenu C, Roberson EB (1996) Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol Biochem 28:877–884

    Article  CAS  Google Scholar 

  • Christensen BE, Characklis WG (1990) Physical and chemical properties in biofilms. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 93–130

    Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Clark RB, Zobel RW, Zeto SK (1999) Effects of mycorrhizal fungus isolate on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176

    Article  CAS  Google Scholar 

  • Coroneos C, Hinsinger P, Gilkes RJ (1996) Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species. Fertil Res 45:143–152

    Article  Google Scholar 

  • Crawford RH, Floyd M, Li CY (2000) Degradation of serpentine and muscovite rock minerals and immobilization of cations by soil Penicillium spp. Phyton (Horn, Austria) 40:315–322

    CAS  Google Scholar 

  • D’Souza SF (2002) Trends in immobilized enzyme and cell technology. Indian J Biotechnol 1:321–338

    Google Scholar 

  • Defreitas JR, Germida JJ (1992) Growth promotion of winter wheat by fluorescent Pseudomonas under field conditions. Soil Biol Biochem 24:1137–1146

    Article  Google Scholar 

  • Diep CN, Hieu TN (2013) Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province, Vietnam. Am J Life Sci 3:88–92

    Article  CAS  Google Scholar 

  • Egamberdiyeva D, Hoflich C (2003) Influence of growth promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol Biochem 35:973–978

    Article  CAS  Google Scholar 

  • Friedrich S, Platonova NP, Karavaiko GI, Stichel E, Glombitza F (1991) Chemical and microbiological solubilization of silicates. Acta Biotechnol 11:187–196

    Article  CAS  Google Scholar 

  • Gahoonia TS, Care D, Nielsen NE (1997) Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant Soil 191:181–188

    Article  CAS  Google Scholar 

  • Giovannetti M, Avio L, Fortuna P, Pellegrino E, Sbrana C, Strani P (2006) At the root of the wood wide web. Plant Signal Behav 1:1–5

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Ni Y, Huang J (2010) Effects of rhizobium, arbuscular mycorrhiza and lime on nodulation, growth and nutrient uptake of lucerne in acid purplish soil in China. Trop Grasslands 44:109–114

    Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    CAS  Google Scholar 

  • Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculation of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. J Soil Sci 44:525–534

    Article  CAS  Google Scholar 

  • Hinsinger P, Jaillard B, Dufey JE (1992) Rapid weathering of a trioctahedral mica by the roots of ryegrass. Soil Sci Soc Am J 65:977–982

    Article  Google Scholar 

  • Hinsinger P, Elsass F, Jaillard B, Robert M (1993) Root induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. J Soil Sci 44:535–545

    Article  CAS  Google Scholar 

  • Hinsinger P, Bolland MDA, Gilkes RJ (1996) Silicate rock powder: effect on selected chemical properties of a range of soils from Western Australia and on plant growth as assessed in a glasshouse experiment. Fertil Res 45:69–79

    Article  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate- and potassium-solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    Article  CAS  Google Scholar 

  • Hutchens E (2009) Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol Rev 23:115–121

    Article  Google Scholar 

  • Jackson BLJ, During C (1979) Studies of slowly available potassium in soils of New Zealand. I. Effect of leaching, temperature and potassium depletion of the equilibrium concentration of potassium in solution. Plant Soil 51:197–204

    Article  CAS  Google Scholar 

  • Javaid A (2009) Arbuscular mycorrhizal mediated nutrition in plants. J Plant Nutr 32:1595–1618

    Article  CAS  Google Scholar 

  • Joshi NT, D’Souza SF (1999) Immobilization of activated sludge for the degradation of phenol. J Environ Sci Health-A 34:1689–1700

    Article  Google Scholar 

  • Koele N, Turpault MP, Hildebrand EE, Uroz S, Frey-Klett P (2009) Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Biochem 41:1935–1942

    Article  CAS  Google Scholar 

  • Kraffezyk I, Trolldenies G, Beringer H (1984) Soluble root exudates of maize influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16:315–322

    Article  Google Scholar 

  • Kuchenbuch RO (1987) Potassium dynamics in the rhizosphere and potassium availability. In: Methodology in soil-K research. Proc Coll Int Potash Inst, International Potash Institute, Horgen, Switzerland, p 215–234

    Google Scholar 

  • Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9(1):715–724

    Google Scholar 

  • Leake JR, Duran AL, Hardy KE, Johnson I, Beerling DJ, Banwart SA, Smits MM (2008) Biological weathering in soil: the role of symbiotic root-associated fungi biosensing minerals and directing photosynthate-energy into grain-scale mineral weathering. Mineral Mag 72:85–89

    Article  CAS  Google Scholar 

  • Leyval C, Berthelin J (1989) Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117:103–110

    Article  CAS  Google Scholar 

  • Li X, Wu Z, Li W, Yan R, Li L, Li J (2007) Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Appl Microbiol Biotechnol 74:1120–1125

    Article  CAS  PubMed  Google Scholar 

  • Lian B, Fu PQ, Mo DM, Liu CQ (2002) A comprehensive review of the mechanism of potassium release by silicate bacteria. Acta Mineral Sin 22:179–183

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98

    Article  CAS  Google Scholar 

  • Lin QM, Rao ZH, Sun YX, Yao J, Xing LJ (2002) Identification and practical application of silicate-dissolving bacteria. Agric Sci China 1:81–85

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • Lopes-Assad ML, Rosa MM, Erler G, Ceccato-Antonini SR (2006) Solubilização de pó-de-rocha por Aspergillus niger. Espaço e Geogr 9:1–16

    Google Scholar 

  • Malinovskaya IM, Kosenko LV, Votselko SK, Podgorskii VS (1990) Role of Bacillus mucilaginosus polysaccharide in degradation of silicate minerals. Mikrobiologiya 59:49–55

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Dell B (2006) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Google Scholar 

  • Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27(1):181–187

    Google Scholar 

  • Meena OP, Maurya BR, Meena VS (2013) Influence of K- solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1(1):53–56

    Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347

    Article  CAS  PubMed  Google Scholar 

  • Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2015a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol. doi:10.1016/j.bcab.2015.08.006

    Google Scholar 

  • Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015b) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347

    Article  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition, 4th edn. International Potash Institute, Bern

    Google Scholar 

  • Moritsuka N, Yanai J, Kosaki T (2004) Possible processes releasing nonexchangeable potassium from the rhizosphere of maize. Plant Soil 258:261–268

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Nahas E, Banzatto DA, Assis LC (1990) Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil Biol Biochem 22:1097–1101

    Article  CAS  Google Scholar 

  • Nunes JLD, DeSouza PVD, Marodin GAB, Fachinello JC (2010) Effect of arbuscular mycorrhizal fungi and indole butyric acid interaction on vegetative growth of ‘Aldrighi’ peach rootstock seedlings. Cienc Agrotecnol 34:80–86

    Article  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116

    Google Scholar 

  • Oueslati O (2003) Allelopathy in two durum wheat (Triticum durum L.) varieties. Agric Ecosyst Environ 96:161–163

    Article  Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2012) Isolation of two potassium solubilizing fungi from ceramic industry soils. Life Sci Leafl 5:71–75

    Google Scholar 

  • Prajapati K, Sharma MC, Modi HA (2013) Growth promoting effect of potassium solubilizing microorganisms on okra (Abelmoschus esculentus). Int J Agric Sci Res 3:181–188

    Google Scholar 

  • Rosa-Magri MM, Avansini SH, Lopes-Assad ML, Tauk-Tornisielo SM, Ceccato-Antonini SR (2012) Release of potassium from rock powder by the yeast Torulaspora globosa. Braz Arch Biol Technol 55: (http://dx.doi.org/10.1590/S1516-89132012000400013)

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spic Aromat Crops 21:118–124

    Google Scholar 

  • Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solublisers: occurrence, mechanism and their role as competent biofertilizers. Int J Curr Microbiol App Sci 3:622–629

    Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sheng XF, He LY (2006) Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Can J Microbiol 52:66–72

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF, Huang WY (2002) Study on the conditions of potassium release by strain NBT of silicate bacteria. Sci Agric Sin 35:673–677

    CAS  Google Scholar 

  • Sheng XF, Xia JJ, Chen J (2003) Mutagenesis of the Bacillus edaphicus strain NBT and its effect on growth of chilli and cotton. Agric Sci China 2:400–412

    Google Scholar 

  • Sheng XF, Zhao F, He LY, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54:1064–1080

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava M (2008) Biochemical and agronomic evaluation of the ability of phosphate solubilizing microorganisms for enhancement of bioavailability of phosphorus and plant growth. Ph.D. thesis, University of Mumbai

    Google Scholar 

  • Shrivastava M, D’Souza SF (2014) Bio-solubilization of rock phosphate and plant growth promotion by Aspergillus niger TMPS1 in ultisol and vertisol. In: LK Heng, K Sakadevan, G Dercon, ML Nguyen (eds) Proceeding-international symposium on managing soils for food security and climate change adaptation and mitigation. Food and Agriculture Organization of the United Nations, Rome 73–77

    Google Scholar 

  • Shrivastava S, D’Souza SF, Desai PD (2008) Production of indole-3-acetic acid by immobilized actinomycete (Kitasatospora spp.) for soil applications. Curr Sci 94:1595–1604

    CAS  Google Scholar 

  • Shrivastava M, Rajpurohit YS, Misra HS, D’Souza SF (2010) Survival of phosphate-solubilizing bacteria against DNA damaging agents. Can J Microbiol 56:822–830

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Singh Y, Imas P, Xie JC (2004) Potassium nutrition of the rice-wheat cropping system. Adv Agron 81:203–259

    Article  CAS  Google Scholar 

  • Singh G, Biswas DR, Marwah TS (2010) Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). J Plant Nutr 33:1236–1251

    Article  CAS  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99

    Google Scholar 

  • Song SK, Huang PM (1988) Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J 52:383–390

    Article  CAS  Google Scholar 

  • Sugumaran P, Janathanam B (2007) Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J Agric Sci 3:350–355

    Google Scholar 

  • Suzuki H, Kumagai H, Oohashi K, Sakamoto K, Inubushi K, Enomoyo S (2001) Transport of trace elements through the hyphae of an arbuscular mycorrhizal fungus into marigold determined by the multitracer technique. Soil Sci Plant Nutr 47:131–137

    Article  CAS  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA (1996) Laboratory evidence by microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  CAS  Google Scholar 

  • Vassileva M, Vassilev N, Azcon R (1998) Rock phosphate on olive cake-based medium and its further application in a soil-plant system. World J Microb Biotechnol 14:281–284

    Article  CAS  Google Scholar 

  • Veresoglou SD, Mamolos AP, Thornton B, Voulgari OK, Sen R, Veresoglou S (2011) Medium-term fertilization of grassland plant communities masks plant species-linked effects on soil microbial community structure. Plant Soil 344:187–196

    Article  CAS  Google Scholar 

  • Wang JG, Zhang FS, Cao YP, Zhang XL (2000) Effect of plant types on release of mineral potassium from gneiss. Nutr Cycl Agroecosyst 56:37–44

    Article  Google Scholar 

  • Willis A, Rodriguesb BF, Harrisa PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Article  Google Scholar 

  • Xiao B, Lian B, Shao W (2012) Do Bacterial secreted proteins play a role in the weathering of potassium-bearing rock powder? Geomicrobiol J 29:497–505

    Article  CAS  Google Scholar 

  • Yaseen T, Burni T, Hussain F (2012) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of chickpea (Cicer arietinum) varieties. Int J Agron Plant Prod 3:334–345

    Google Scholar 

  • Zarjani JK, Aliasgharzad N, Oustan S, Emadi M, Ahmadi A (2013) Isolation and characterization of potassium solubilizing bacteria in some Iranian soils. Arch Agro Soil Sci 59:1713–1723

    Article  CAS  Google Scholar 

  • Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. D’Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Shrivastava, M., Srivastava, P.C., D’Souza, S.F. (2016). KSM Soil Diversity and Mineral Solubilization, in Relation to Crop Production and Molecular Mechanism. In: Meena, V., Maurya, B., Verma, J., Meena, R. (eds) Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2776-2_16

Download citation

Publish with us

Policies and ethics