Skip to main content

Static and Dynamic Mechanical Analysis of Coir Fiber/Montmorillonite Nanoclay-Filled Novolac/Epoxy Hybrid Nanocomposites

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

A simple method for the preparation of novel nanocomposites involving different weight ratios of blends of epoxy novolac (ENR) and diglycidyl ether of bisphenol A (DGEBA) resin, natural coir fiber, and organically modified montmorillonite (OMMT) nanoclay is described. It was found that on blending ENR with DGEBA, the storage modulus at room temperature are enhanced by about 100 % or more in the case of 50 and 65 % ENR-containing matrices; whereas, the enhancement in the case of 20 and 35 % ENR-containing matrices is only 50 % that of the pure matrix. It was also observed that the tan δ peak heights of the composite containing 50 and 65 % ENR are closer to that of 35 % ENR-containing composite. The plausible explanation is made on the basis of experimental findings of static and dynamic mechanical analysis (DMA) of ENR and DGEBA resin blends. X-ray diffraction (XRD) studies and Fourier transform infrared (FTIR) spectroscopy was used to obtain information on the modification of nanoclay and also thermal stability of various nanocomposites were determined from thermo gravimetric analyses. DMA showed that the modification of the clay strongly influences the stiffness and glass transition temperature (T g) of the nanocomposites. It is possible to manufacture coir composites with increased stiffness without sacrificing their ductility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Basara C, Yilmazer U, Bayram G (2005) Synthesis and characterization of epoxy based nanocomposites. J Appl Polym Sci 98:1081–1086

    Article  CAS  Google Scholar 

  • Blanchard V, Blanchet P (2011) Color stability for wood products during use: effects of inorganic nanoparticles. BioResour 6:1219–1229

    CAS  Google Scholar 

  • Chen HT, Gao J, Wang G, Shi SQ, Zhang SB, Cai LP (2004) Effect on temperature on calcium carbonate deposition in situ on bamboo fiber and polymer interfaces. Wood Fiber Sci 46:1–12

    Google Scholar 

  • Datta C, Basu D, Banerjee AN (2002) Mechanical and dynamical mechanical properties of jute fibers-Novolac-Epoxy composite laminates. J App Polym Sci 85:2800–2807

    Article  CAS  Google Scholar 

  • Garea SA, Nicolescu A, Deleanu C, Iovu H (2010) New nanocomposites based on epoxy resins reinforced with modified montmorillonite. Int J Polym Anal Charact 15:497–508

    Article  CAS  Google Scholar 

  • Ghosh P, Mitra PS, Banerjee AN (2003) Photopolymerization of methyl methacrylate with the use of bromine as photoinitiator. J Polym Sci Polym Chem Ed 11(8):2021–2030

    Article  Google Scholar 

  • Jia N, Li SM, Ma MG, Sun RC, Zhu L (2011) Green microwave-assisted synthesis of cellulose/calcium silicate nanocomposites in ionic liquids and recycled ionic liquids. Carbohydr Res 34:2970–2974

    Article  Google Scholar 

  • Jia N, Li SM, Ma MG, Sun RC (2012) Rapid microwave-assisted fabrication of cellulose/F-substituted hydroxyapatite nanocomposites using green ionic liquids as additives. Matter lett 68:44–46

    Article  CAS  Google Scholar 

  • Lee A, Lichtenhan JD (1999) Thermal and viscoelastic property of epoxy-clay and hybrid inorganic-organic nanocomposites. J Appl Polym Sci 73:1993–2001

    Article  CAS  Google Scholar 

  • Lee H, Neville K (1967) Handbook of Epoxy Resins. McGraw-Hill, New York

    Google Scholar 

  • Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC (2011a) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86:441–447

    Article  CAS  Google Scholar 

  • Li WY, Sun N, Stoner B, Jiang XY, Lu XM, Rogers RD (2011b) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13:2038–2047

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Article  CAS  Google Scholar 

  • Ma MG, Fu LH, Li SM, Zhang XM, Sun RC, Dai YD (2012a) Hydrothermal synthesis and characterization of wood powder/CaCO3 composites. Carbohydr Polym 88:1470–1475

    Article  CAS  Google Scholar 

  • Ma MG, Fu LH, Sun RC, Jia N (2012b) Compare study on the cellulose/CaCO3 composites via microwave-assisted method using different cellulose types. Carbohydr Polym 90:309–315

    Article  CAS  Google Scholar 

  • Ma MG, Fu LH, Yao K, Tian CH (2014) Microwave-assisted synthesis and characterization of CaCO3 particles-filled wood powder nanocomposites. BioRes 9:3909–3918

    CAS  Google Scholar 

  • Mai C, Militz H (2004) Modification of wood with silicon compounds, inorganic silicon compounds and sol-gel systems: a review. Wood Sci Technol 37:339–348

    Article  CAS  Google Scholar 

  • Otaigbe JU (1991) Dynamic mechanical response of a thermoplastic sheet molding compound-glass fiber composite. Polym Eng Sci 31:104–109

    Article  CAS  Google Scholar 

  • Saw SK, Sarkhel G, Choudhury A (2011a) Surface modification of coir fiber involving oxidation of lignins followed by reaction with furfuryl alcohol: characterization and stability. App Surf Sci 257:3763–3769

    Article  CAS  Google Scholar 

  • Saw SK, Sarkhel G, Choudhury A (2011b) Dynamic mechanical analysis of randomly oriented short bagasse/coir hybrid fibre reinforced epoxy novolac composites. Fibers Polym 12:506–513

    Article  CAS  Google Scholar 

  • Saw SK, Sarkhel G, Choudhury A (2012) Preparation and characterization of chemically modified jute-coir hybrid fiber reinforced epoxy novolac composites. J Appl Polym Sci 125:3038–3049

    Article  CAS  Google Scholar 

  • Saw SK, Akhtar K, Yadav N, Singh AK (2014) Hybrid composites made from jute/coir fibers: Water absorption, thickness swelling, density, morphology and mechanical properties. J Nat Fibers 11:39–53

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Fabrication of hibiscus sabdariffa fiber reinforced polymer composites. Iran Polym J 17(7):782–791

    Google Scholar 

  • Singha AS, Thakur VK (2008b) Effect of fiber loading on urea formaldehyde matrix based green composites. Iran Polym J 17(11):861–873

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008c) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. Bioresources 3:1173–1186

    Google Scholar 

  • Singha AS, Thakur VK (2008d) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E-J Chem 5:1055–1062

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Chemical resistance, mechanical and physical properties of biofiber based polymer composites. Polym Plast Technol Eng 48(7):736–744

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Fabrication and characterization of S. cilliare fiber reinforced polymer composites. Bull Mater Sci 32(1):49–58

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010a) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29(5):700–709

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010b) Synthesis and characterization of short Grewia optiva fiber based polymer composites. Polym Compos 31:459–470

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010c) Renewable resources based green polymer composites: analysis and characterization. 15:127–214

    Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Sharma A, Khanna AJ, Rana RK, Rana AS (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14(8):695–711

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011) Graft copolymerisation of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122(1):532–544

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) Graft copolymerisation of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–172

    Article  CAS  Google Scholar 

  • Thakur VK, Yan J, Lin M-F et al (2012b) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013a) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013b) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62:226–230

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013c) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013d) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013e) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014a) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014b) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19(3):256–271

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer Nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    Article  CAS  Google Scholar 

  • Wingard CD, Beatty CL (1990) Crosslinking of an epoxy with a mixed amine as a function of stoichiometry. II Final properties via dynamic mechanical spectroscopy. J Appl Polym Sci 41:2539–2544

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Central Instrumental Facility (CIF) of Birla Institute of Technology, Mesra, Ranchi, India for providing equipment access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar Saw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Saw, S.K. (2015). Static and Dynamic Mechanical Analysis of Coir Fiber/Montmorillonite Nanoclay-Filled Novolac/Epoxy Hybrid Nanocomposites. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_5

Download citation

Publish with us

Policies and ethics