Skip to main content

Cellulose Acetate Nanocomposites with Antimicrobial Properties

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

The chapter overviews recent progress made in the area of cellulose acetate nanocomposites, considering their high-volume applications and easy processing ability. Based on their structural details, the review provides data concerning the manufacturing, characterization, and new developments in this area, with particular emphasis on biomedical applications. Stress is laid on the importance of antimicrobial activity, correlated with different bacteria characteristics, on also considering that their interaction mechanisms create inhibitory effects against microbial growth in a solid medium, and decide their areas of applicability. In this context, the presented aspects show that cellulosic materials can be designed and fine-tuned to acquire certain properties required in different biomedical areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderman DAA (1984) A review of cellulose ethers in hydrophilic matrices for oral controlled-release dosage forms. Int J Pharm Technol Prod Man 5:1–9

    CAS  Google Scholar 

  • Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796

    Google Scholar 

  • Ang-atikarnkul P, Watthanaphanit A, Rujiravanit R (2014) Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties. Compos Sci Technol 96:88–96

    CAS  Google Scholar 

  • Anitha S, Brabu B, Thiruvadigal John D, Gopalakrishnan C, Natarajanc TS (2013) Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohyd Polym 97:856–863

    CAS  Google Scholar 

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126

    CAS  Google Scholar 

  • Badawi E, Ashraf N (2013) Carbon nanotubes-cellulose acetate nanocomposites: membranes for water desalination—thesis

    Google Scholar 

  • Bae E, Park HJ, Lee J, Kim Y, Yoon J, Park K, Choi K, Yi J (2010) Bacterial cytotoxicity of the silver nanoparticle related to physicochemical metrics and agglomeration properties. Environ Toxicol Chem 29:2154–2160

    CAS  Google Scholar 

  • Bajaj PJ (2002) Finishing of textile materials. Appl Polym Sci 83:631–659

    CAS  Google Scholar 

  • Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, Shoichet MS (2009) An injectable drug delivery platform for sustained combination therapy. J Cont Rel 138:205–213

    CAS  Google Scholar 

  • Belly RT, Kydd GC (1982) Silver resistance in microorganisms. Dev Ind Microbiol 23:567–577

    Google Scholar 

  • Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S (2014) Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chem Eng J 243:372–379

    CAS  Google Scholar 

  • Biermann C (1996) Handbook of pulping and papermaking, 2nd edn. Academic Press, London

    Google Scholar 

  • Bondeson D (2007) Biopolymer-based Nanocomposites: processing and properties. Thesis for the degree of philosophiae doctor Trondheim. ISBN 978-82-471-1254-0 (printed ver); ISBN 978-82-471-1268-7 (electronic ver); ISSN 1503-818

    Google Scholar 

  • Bragg PD, Rannie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

    CAS  Google Scholar 

  • Brown RM Jr (1998) Microbial cellulose: a new resource for wood, paper, textiles, food and specialty products. Position Paper

    Google Scholar 

  • Brown TA, Smith DG (1976) The effects of silver nitrate on the growth and ultrastructure of the yeast Cryptococcus albidus. Microbios Lett 3:155–162

    CAS  Google Scholar 

  • Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L (2007) A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 15:94–104

    Google Scholar 

  • Chan MW, Schwaitzberg SD, Demcheva M, Vournakis J, Finkielsztein S, Connolly RJ (2000) Comparison of poly-N-acetyl glucosamine (P-GlcNAc) with absorbable collagen (Actifoam), and fibrin sealant (Bolheal) for achieving hemostasis in a swine model of splenic hemorrhage. J Trauma 48:454–457

    CAS  Google Scholar 

  • Clement JL, Jarrett PS (1994) Antibacterial silver. Met Based Drugs 1:467–482

    CAS  Google Scholar 

  • Costa HO, de Souza FC (2005) Evaluation of the tissue regeneration of the burned pig´s skin followed by BiotissueTM grafting. Acta ORL/T’ecnicas emOtorrinolaringologia 23:192–196

    Google Scholar 

  • Coutinho FMB, Costa THS, Carvalho DL (1997) Polypropylene-wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J Appl Polym Sci 65:1227–1235

    CAS  Google Scholar 

  • Culler SR, Ishida H, Koenig JL (1986) Silane interphase of composites: effect of process conditions on gamma—aminopropyltriethoxysilane. Polym Compos 7:231–238

    CAS  Google Scholar 

  • Cui W, Li X, Xie C, Chen J, Zou J, Zhou S, Weng J (2010) Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) fibers grafted with chitosan as potential tissue engineering scaffolds. Polymer 51:2320–2328

    CAS  Google Scholar 

  • Dahlin C, Linde A, Gottlow J, Nyman S (1988) Healing of bone defects by guided tissue regeneration. Plastic Reconstruct Surgery 81:672–676

    CAS  Google Scholar 

  • Dai L, Chen XL, Wang WJ, Zhou T, Hu BH (2003) Growth and luminescence characterization of large-scale zinc oxide nanowires. J Phys Condens Matter 15:2221–2226

    CAS  Google Scholar 

  • Danese PN (2002) Antibiofilm approaches: prevention of catheter colonization. Chem Biol 9:873–880

    CAS  Google Scholar 

  • Dobos AM, Onofrei MD, Ioan S (2014) Liquid crystals and cellulose derivatives composites. In: Thakur VK, Kessle MR (eds) Green biorenewable biocomposites from knowledge to industrial applications, CRC Press, ISBN: 9781771880329

    Google Scholar 

  • Dunn K, Edwards-Jones V (2004) The role of Acticoat with nanocrystalline silver in the management of burns. Burns 30(1):S1–S9

    Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33

    CAS  Google Scholar 

  • Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    CAS  Google Scholar 

  • Ewald A, Gluckermann SK, Thull R, Gbureck U (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22–31

    Google Scholar 

  • Fischer TH, Thatte HS, Nichols TC, Bender-Neal DE, Bellinger DA, Vournakis JN (2005) Synergistic platelet integrin signaling and factor XII activation in poly-N-acetyl glucosamine fiber-mediated hemostasis. Biomaterials 26:5433–5443

    CAS  Google Scholar 

  • Fong J, Wood F (2006) Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine 1:441–449

    CAS  Google Scholar 

  • Fuhrmann GF, Rothstein A (1968) The mechanism of the partial inhibition of fermentation in yeast by nickel ions. Biochem Biophys Acta 163:331–338

    CAS  Google Scholar 

  • Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238

    CAS  Google Scholar 

  • Furr JR, Russell AD, Turner TD, Andrews A (1994) Antibacterial activity of actisorb plus, actisorb and silver nitrate. J Hosp Infect 27:201–208

    CAS  Google Scholar 

  • Ghatge ND, Khisti RS (1989) Performance of new silane coupling agents along with phenolic nobake binder for sand core. J Polym Mater 6:145–149

    CAS  Google Scholar 

  • Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4:657–665

    Google Scholar 

  • Gonz´alez L, Rodr´ıguez A, de Benito JL, Marcos- Fern´andez A (1997) Applications of an azide sulfonyl silane as elastomer crosslinking and coupling agent. J Appl Polym Sci 63: 1353–1359

    Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, Larramendi IR, Rojo T, Serpooshan V, Parak Wolfgang J, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    CAS  Google Scholar 

  • Hassanien AM, El-Hashash MA, Mekewi MA, Guirguis DB, Ramadan AM (2013) Fabrication of polyvinyl alcohol/cellulose acetate (PVA/CA/PEG), antibacterial membrane for potential water purification application. Hydrol Current Res 4:1–6

    Google Scholar 

  • Hart J, Silcock D, Gunnigle S, Cullen B, Light ND, Watt PW (2002) The role of oxidised regenerated cellulose/collagen in wound repair: effects in vitro on fibroblast biology and in vivo in a model of compromised healing. Int J Biochem Cell Biol 34:1557–1570

    CAS  Google Scholar 

  • Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Google Scholar 

  • Heller J (1987) Use of polymers in controlled release of active agents, In: Robinson JR, Lee VHL (eds) Controlled drug delivery. Fundamentals and applications, 180–210

    Google Scholar 

  • Hilal N, Al-Khatib L, Atkin BP, Kochkodan V, Potapchenko N (2003) Photochemical modification of membrane surfaces for (bio) fouling reduction: a nano-scale study using AFM. Desalination 158:65–72

    CAS  Google Scholar 

  • Huang Y, Zhang L, Yang J, Zhang X, Xu M (2013) Structure and properties of cellulose films reinforced by chitin whiskers. Macromol Mater Eng 298:303–310

    CAS  Google Scholar 

  • Huang L, Nagapudi K, Chaikof EL (2001) Engeenered collagen-PEO nanofibers and fabrics. J Biomat Sci Polym Ed 12:979–993

    CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  • Hu L, Wu H, Cui Y (2010a) Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl Phys Lett 96:183502–183504

    Google Scholar 

  • Hu L, Pasta M, La Mantia F, Cui L, Jeong S, Dawn Deshazer H, Choi JW, Han SM, Cui Y (2010b) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    CAS  Google Scholar 

  • Hu L, La Mantia F, Wu H, Xie X, McDonough J, Pasta M, Cui Y (2011) Lithium-ion textile batteries with large areal mass loading. Adv Energy Mater 1:1012–1017

    CAS  Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—amasterpiece of nature’s arts. J Mater Sci 35:261–270

    CAS  Google Scholar 

  • Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RR (2003) Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials 24:3605–3609

    CAS  Google Scholar 

  • Ioan S, Dobos-Necula AM (2012) Silver nanoparticles in cellulose derivative matrix. In: Thakur VK, Singha AS (eds) Nanotechnology in polymers. Studium Presss, USA, chapter 11, pp 191–248

    Google Scholar 

  • Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paperlike Li-ion battery electrodes. J Mater Chem 20:7344–7347

    CAS  Google Scholar 

  • Jabbour L, Destro M, Gerbaldi C, Chaussy D, Penazzi N, Beneventi D (2012) Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. J Mater Chem 22:3227–3233

    CAS  Google Scholar 

  • Jabbour L, Destro M, Chaussy D, Gerbaldi C, Penazzi N, Bodoardo S, Beneventi D (2013) Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly wallpaper Li ion batteries. Cellulose 20:571–582

    CAS  Google Scholar 

  • Jadhav S, Gaikwad S, Nimse M, Rajbhoj A (2011) Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J Cluster Sci 22:121–129

    CAS  Google Scholar 

  • Johnson JR, Kuskowski MA, Wilt TJ (2006) Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Int Med 144:116–126

    Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    CAS  Google Scholar 

  • Joseph K, Mattoso CLH, Toledo RD (2000) Natural fiber reinforced thermoplastic composites.In: Frollini E, Leao AL, Mattoso CLH (eds) Nature Polymeric Agrofibers Compos, chapter 4, Embrapa. S˜an Carlos, Brazil, pp 159–201

    Google Scholar 

  • Kaith BS, Singha AS, Kumar S, Misra BN (2005) FASH2O2 initiated graft copolymerization of methylmethacrylate onto flax and evaluation of some physical and chemical properties. J Polym Mat 22:425–432

    CAS  Google Scholar 

  • Kalia S, Kaith BS, Sharma S, Bhardwaj B (2008) Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers Polym 9:416–422

    CAS  Google Scholar 

  • Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites-a review. Polym Eng Sci 49:1253–1272

    CAS  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM, Kaith BS, Av´erous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:35, Article ID 837875

    Google Scholar 

  • Khoushab F, Yamabhai M (2010) Review: chitin research revisited. Mar Drugs 8:1988–2012

    CAS  Google Scholar 

  • Kim J, Kwon S, Ostler E (2009) Antimicrobial effect of silver-impregnated cellulose: potential for antimicrobial therapy. J Biol Eng 3:1–9

    Google Scholar 

  • Klasen HJ (2000) A historical review of the use of silver in the treatment of burns II. Renewed Interest silver. Burns 26:131–138

    CAS  Google Scholar 

  • Kwon J-W, Yoon SH, Lee SS, Seo KW, Shim IS (2005) Preparation of silver nanoparticles in cellulose acetate polymer and the reaction chemistry of silver complexes in the polymer. Bull Korean Chem Soc 26:837–840

    CAS  Google Scholar 

  • Lansdown AB (2002a) Silver. I: Its antibacterial properties and mechanism of action. J Wound Care 11:125–130

    Google Scholar 

  • Lansdown AB (2002b) Toxicity in mammals and how its products aid wound repair. J Wound Care 11:173–177

    Google Scholar 

  • Lea SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell Alan J (2004) Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882

    Google Scholar 

  • Legnani C, Barud HS, Quirino WG, Caiut JMA, Ribeiro SJL, Achete CA, Cremona M (2009) Transparent nanocomposite bacterial cellulose used as flexible substrate for OLED. In: Proceedings of the 11th international conference on advanced materials. Rio de Janeiro, Brazil

    Google Scholar 

  • Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013a) Flexible nano-paperbased positive electrodes for Li-ion batteries—preparation process and properties. Rapid Commun Nano Energy 2:794–800

    CAS  Google Scholar 

  • Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013b) Single-paper flexible Liion battery cells through a papermaking process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677

    CAS  Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scafold for tissue engineering. J Biomed Mater Res Part A 60:613–621

    CAS  Google Scholar 

  • Li D, McCann JT, Gratt M, Xia Y (2004) Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chemi Phys Lett 394:387–391

    CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez Pedro JJ (2008a) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    CAS  Google Scholar 

  • Li XH, Shao CL, Liu YC, Chu XY, Wang CH, Zhang BX (2008b) Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinylpyrrolidone nanotubes prepared by a single capillary electrospinning. J Chem Phys 129:114708–114715

    CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    CAS  Google Scholar 

  • Longer MA, Robinson JR (1980) Sustained-release drug delivery systems. In: Remington JP (ed) Remington’s pharmaceutical sciences, 18th edn. Mack publishing, easton, pp 1676–1693

    Google Scholar 

  • Lonsdale HK, Padall HK (1972) Reverse osmosis membrane research. Plenum press, New York 155

    Google Scholar 

  • Lonnberg H, Fogelstr¨om L, Samir MASA, Berglund L, Malmstr¨om E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(ε-caprolactone)—synthesis and Characterization. Europ Polym J 44:2991–2997

    Google Scholar 

  • Lukens RJ (1983) Chemistry of fungicidal action. Mol Biol Biochem Biophys 10

    Google Scholar 

  • Macedo NL, Matuda FS, Macedo LGS, Monteiro ASF, Valera MC, Carvalho YR (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3:395–400

    Google Scholar 

  • Madhumathi K, Sudheesh Kumar PT, Abhilash S, Sreeja V, Tamura H, Manzoor K, Nair SV, Jayakumar R (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813

    CAS  Google Scholar 

  • Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14:4654–4661

    CAS  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    CAS  Google Scholar 

  • Martin CR (1995) Template synthesis of electronically conductive polymer nanostructures. Acc Chem Res 28:61–68

    CAS  Google Scholar 

  • Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    CAS  Google Scholar 

  • Miller LP, McCallan EA (1957) Toxic action of metal ions to fugus spores. Agric Food Chem 5:116–122

    CAS  Google Scholar 

  • Morganti P, Muzzarelli RAA, Muzzarelli C (2006) Multifunctional use of innovative chitin nanofibrils for skin care. J Appl Cosmetology 24:105–114

    CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    CAS  Google Scholar 

  • Murugaraj P, Mainwaring DE, Jakubov T, Mora-Huertas NE, Khelil NA, Siegele R (2006) Electron transport in semiconducting nanoparticle and nanocluster carbon– polymer composites. Solid State Commun 137:422–426

    CAS  Google Scholar 

  • Necula M, Dunca S, Stoica I, Olaru N, Olaru L, Ioan S (2010) Morphological properties and antibacterial activity of nano-silver-containing cellulose acetate phthalate films. Int J Polym Anal Charact 15:341–350

    Google Scholar 

  • Necula AM, Stoica I, Olaru N, Doroftei F, Ioan S (2011) Silver nanoparticles in cellulose acetate polymers. Rheological and morphological properties. J Macromol Sci Part B: Phys 50:639–651

    CAS  Google Scholar 

  • Nemetz AP, Loures DRR, Coelho JCU (2001) Efeito estrutural da utilização de celulose biossintética e politetrafluoretileno expandido como substitutos do peritônio em cães Arquivos Brasileiros De Cirugia Digestiva 14:139–142

    Google Scholar 

  • Novaes AB Jr, Novaes AB (1992) IMZ implants placed into extraction sockets in association with membrane therapy (Gengiflex) and porous hydroxyapatite: a case report. Int J Oral Maxillofac Implants 7:536–540

    Google Scholar 

  • Novaes AB Jr, Novaes AB (1997) Soft tissue management for primary closure in guided bone regeneration: surgical technique and case report. Int J Oral Maxillofac Implants 12:84–87

    Google Scholar 

  • Ottaviani MF, Valluzzi R, Balogh L (2002) Internal structure of silver-poly(amidoamine) dendrimer complexes and nanocomposites. Macromolecules 35:5105–5115

    CAS  Google Scholar 

  • Olson DG, Tripathi SA, Giannone RJ (2010) Deletion of the Cel48S cellulase from clostridium thermocellum. Int J Polym Sci Proc Nat Acad Sci USA 107:17727–17732

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium Escherichia coli. Appl Environ Microb 73:1712–1720

    CAS  Google Scholar 

  • Panacek A, Kolar M, Vecerova R, Pruceka R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    CAS  Google Scholar 

  • Park HS, Park YO (2005) Filtration properties of electrospun utrafine fiber webs. Korean J Chem Eng 22:165–172

    CAS  Google Scholar 

  • Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7

    CAS  Google Scholar 

  • Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5:2279–2289

    CAS  Google Scholar 

  • Pinto RJB, Neves MC, Pascoal Neto C, Trindade T (2012) Growth and chemical stability of copper nanostructures on cellulosic fibers. Eur J Inorg Chem 2012:5043–5049

    CAS  Google Scholar 

  • Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. BioMed Res Int 280512:6

    Google Scholar 

  • Van Den Plas D, De Smet K, Lens D, Sollie P (2008) Differential cell death programmes induced by silver dressings in vitro. Eur J Dermatol 18:416–421

    Google Scholar 

  • Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer Milo SP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9:1643–1651

    CAS  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibres on composite properties. Bull Mat Sci 24:129–135

    CAS  Google Scholar 

  • Ranby BG (1952) The cellulose micelles. Tappi 35:53–58

    CAS  Google Scholar 

  • Richards RME (1981) Antimicrobial action of silver nitrate. Microbios 31:83–91

    CAS  Google Scholar 

  • Richards RME, Odelola HA, Anderson B (1984) Effect of silver on whole cells and spheroplasts of a silver resistant Pseudomonas aeruginosa. Microbios 39:151–258

    CAS  Google Scholar 

  • Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732

    CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomat 4:707–716

    CAS  Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–371

    CAS  Google Scholar 

  • Salata LA, Craig GT, Brook IM (1995) In vivo evaluation of a new membrane (Gengiflex) for guided bone regeneratien (GBR). J Dental Res 74:825–831

    Google Scholar 

  • Sarma TK, Chowdhury D, Paul A, Chattopadhyay A (2002) Synthesis of Au-nanoparticle conductive polyaniline composite using H2O2 as oxidizing as well as reducing agent. Chem Comun 14:1048–1049

    Google Scholar 

  • Schadler LS (2003) Polymer-based and polymer-filled nanocomposites. In: Ajayan PM, Schadler LS, Braun PV (eds) Nanocomposite science and technology. Weinheim Wiley-VCH Verlag, New York

    Google Scholar 

  • Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomat 5:2570–2578

    CAS  Google Scholar 

  • Schreurs WJA, Rosenburgh H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13

    CAS  Google Scholar 

  • Shafei AE, Abou-Okeil A (2011) ZnO/carboxymethyl chitosan bionanocomposite to impart antibacterial and UV protection for cotton fabric. Carbohydr Polym 83:920–925

    Google Scholar 

  • Shaikh S, Birdi A, Qutubuddin S, Lakatosh E, Baskaran H (2007) Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites. Annals Biomed Eng 35:2130–2137

    Google Scholar 

  • Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    CAS  Google Scholar 

  • Shiraishi Y, Toshima N (2000) Oxidation of ethylene catalyzed by colloidal dispersion of poly(sodium acrylate) protected silver nanoclusters. Coll Surf A 169:59–66

    CAS  Google Scholar 

  • Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioproc Eng 10:1–8

    CAS  Google Scholar 

  • Silva EC (2009) Hidroxiapatita Sintetica em alveolo dentario apos exodontia em Felis catus: estudo clınico, radiologico e histomorfometrico. M.S. Dissertation, Universidade Federal

    Google Scholar 

  • Singha AS, Thakur VK (2008a) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791

    Google Scholar 

  • Singha AS, Thakur VK (2008b) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010 a) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97

    Google Scholar 

  • Singha AS, Thakur VK (2010b) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    Google Scholar 

  • Singh N, Galande C, Miranda A, Mathkar A, Gao W, Mohana Reddy AL, Vlad A, Ajayan PM (2012) Paintable battery. Sci Rep 2:481

    Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25:1632–1637

    CAS  Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gramnegative bacteria. J Colloid Int Sci 275:177–182

    CAS  Google Scholar 

  • Southward RE, Thompson DW (2001) Reflective and conductive silvered polyimide films for space applications prepared via a novel single-stage self-metallization technique. Mat Des 22:565–576

    CAS  Google Scholar 

  • Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Technol Equine Pract 3:148–163

    Google Scholar 

  • Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/Gold nanocomposites. Efect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950

    CAS  Google Scholar 

  • Tam KH, Djurisic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chanb WK, Leungc FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010a) Silane functionalization of saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Mehta IK (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15:137–146

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    CAS  Google Scholar 

  • Thakur VK, Yan J, Lin M-F et al (2012a) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17:48–60

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012c) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012d) Graft Copolymerization of Methyl Acrylate onto Cellulosic Biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012d) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Cleaner Product 82:1–15

    Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014a) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sust Chem Eng 2:1072–1092

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014c) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  • Thompson CM, Herring HM, Gates TS, Connell JW (2003) Preparation and characterization of metal oxide/polyimide nanocomposites. Compos Sci Technol 63:1591–1598

    CAS  Google Scholar 

  • Thurmann RB, Gerba CP (1988) Molecules mechanisms of viral inactivation by water disinfectants. Adv Appl Microbiol 33:75–105

    Google Scholar 

  • Thurmann RB, Gerba CP (1989) The molecules mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control 18:295–315

    Google Scholar 

  • Tian X, Zhang X, Liu W, Zheng J, Ruan C, Cui P (2006) Preparation and properties of poly(ethylene terephthalate)/silica nanocomposites. J Macromol Sci Part B Phys 45:507–513

    CAS  Google Scholar 

  • Tiller JC, Lee SB, Lewis K, Klibanov AM (2002) Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria. Biotechnol Bioeng 79:465–471

    CAS  Google Scholar 

  • Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP (2012) Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents 40:135–139

    CAS  Google Scholar 

  • Wang X, Drew C, Lee SH, Senecal KJ, Kumar J, Samuelson LA (2002) Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett 2:1273–1275

    CAS  Google Scholar 

  • Wang M, Singh H, Hatton TA, Rutledge GK (2004) Field responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45:5505–5514

    CAS  Google Scholar 

  • Watanabe Y, Mukai B, Kawamura KI, Ishikawa T, Namiki M, Utoguchi N, Fujii M (2002) Preparation and evaluation of press-coated aminophylline tablet using crystalline cellulose and polyethylene glycol in the outer shell for timed-release dosage forms. In: Zasshi Y (ed) The Pharmaceutical Society of Japan, 122:157–162

    Google Scholar 

  • Wongpanit P, Sanchavanakit N, Pavasant P, Bunapresert T, Tabata Y, Rujiravanit R (2007) Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur Polym J 43:4123–4135

    CAS  Google Scholar 

  • Watkins JJ, McCarthy TJ (1995) Polymer/metal nanocomposite synthesis in supercritical CO2. Chem Mater 7:1991–1994

    CAS  Google Scholar 

  • Wiegand C, Heinze T, Hipler UC (2009) Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 17:511–521

    Google Scholar 

  • Wright JB, Lam K, Hansen D, Burrell RE (1999) Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 27:344–350

    CAS  Google Scholar 

  • Wu Y, Jia W, An Q, Liu Y, Chen J, Li G (2009a) Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications. Nanotechnology 20:245101

    Google Scholar 

  • Wu J, Hou S, Ren D, Mather PT (2009b) Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules 10:2686–2693

    CAS  Google Scholar 

  • Xie S, Li W, Pan Z, Chang B, Sun L (2000) Mechanical and physical properties on carbon nanotubes. J Phys Chem Solids 61(7):1153–1158

    CAS  Google Scholar 

  • Yang QB, Li DM, Hong YL, Li ZY, Wang C, Qiu SL, Wei Y (2003) Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning. Synthetic Met 137:973–974

    Google Scholar 

  • Yano H, Sugiyama J, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mat 17:153–155

    CAS  Google Scholar 

  • Yuvaraj D, Kaushik R, Narasimha RK (2010) Optical, field-emission and antimicrobial properties of ZnO nanostructured films deposited at room temperature by activated evaporation. ACS Appl Matter Interfaces 2:1019–1024

    CAS  Google Scholar 

  • Zhu C, Xue J, He J (2009) Controlled in-situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J Nanosci Nanotechnol 9:3067–3074

    CAS  Google Scholar 

  • Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Controlled Release 92:227–231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ioan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Dobos, A.M., Onofrei, MD., Ioan, S. (2015). Cellulose Acetate Nanocomposites with Antimicrobial Properties. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_12

Download citation

Publish with us

Policies and ethics