Skip to main content

Cellulose Nanofiber for Eco-friendly Polymer Nanocomposites

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Nanocomposite is the reinforced composite material consists of nanoscale reinforcing fillers and matrix polymer. Fillers are dispersed within nanoscale and require just less amount than conventional reinforcing fillers, but the properties of composites are greatly improved. There would be only insignificant deterioration of properties in case of recycling; therefore, it is able to be an eco-friendly composite material. Recent studies show that interests in cellulose nanocomposites consists of nanocellulose fiber and matrix polymer are enhanced more and more in recent years. Especially, cellulose nanocomposites are best representative eco-friendly material as compared with nanocomposites reinforced with inorganic nanoscale fillers such as nanoclay, montmorillonite, mica, and silica. Natural filler such as cellulose nanofiber from palm empty fruit bunch (OPEFB) has drawn bigger attention as it promotes eco-friendly character. In current study, cellulose nanofiber (CNF) was prepared through pretreatment to remove noncellulosic content and then undergoes acid hydrolysis process. Starch-based nanocomposite film was formed by incorporation of 2–10 % CNF per weight of starch into the film matrix. The nanocomposite film that formed appears translucent and easy to handle. However, the film becomes more opaque as percentage of CNF incorporation increased. It was observed that films with the addition of up to 2 % CNF showed higher tensile strength and thermal stability, better barrier properties to water vapor than control films. Further study on the effect of CNF was carried out on Starch/Chitosan composite packaging film to determine the influence of CNF toward antimicrobial properties of the composite film as applied packaging for perishable food. The effects of CNF contents on the tensile, dynamic mechanical and thermal properties as well as the barrier properties of the Starch/Chitosan nanocomposite were also investigated. It also embarks a potential of cellulose nanofiber as filler for antimicrobial packaging as it enhances the results on antimicrobial efficacy toward food shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Marliana MM, Issam AM, Bakare IO (2011) Exploring isolated lignin material from oil palm biomass waste in green composites. Mater Des 32:2604–2610

    CAS  Google Scholar 

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012a) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Google Scholar 

  • Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012b) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Google Scholar 

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17:271–277

    Google Scholar 

  • Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277

    CAS  Google Scholar 

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    CAS  Google Scholar 

  • Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68:557–565

    CAS  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng: R: Rep 28:1–63

    Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16(6):2413–2415

    CAS  Google Scholar 

  • Arayapranee W, Na-Ranong N, Rempel GL (2005) Application of rice husk ash as fillers in the natural rubber industry. J Appl Polym Sci 98:34–41

    CAS  Google Scholar 

  • Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci, Part C: Polym Rev 44:231–274

    Google Scholar 

  • Azeredo HMCd (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253

    Google Scholar 

  • Azeredo HM, Mattoso LH, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7

    CAS  Google Scholar 

  • Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, de Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT–Food Sci Technol 46:294–297

    CAS  Google Scholar 

  • Ban W, Song J, Argyropoulos DS, Lucia LA (2006) Improving the physical and chemical functionality of starch-derived films with biopolymers. J Appl Polym Sci 100:2542–2548

    CAS  Google Scholar 

  • Bhatnagar A (2005) Processing of Cellulose Nanofiber-reinforced Composites. J Reinf Plast Compos 24:1259–1268

    CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510

    CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Gírio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864

    CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp derived microfibres in a PVA matrix. Holzforschung 60(1):53–58

    CAS  Google Scholar 

  • Chang PR, Jian R, Yu J, Ma X (2010a) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740

    CAS  Google Scholar 

  • Chang PR, Jian RJ, Yu JG, Ma XF (2010b) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:420–425

    CAS  Google Scholar 

  • Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: affect of hydrolysis time. Carbohydr Polym 76:607–615

    CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    CAS  Google Scholar 

  • Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762

    CAS  Google Scholar 

  • Cheng Q, Wang S, Rials T, Lee S (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602

    CAS  Google Scholar 

  • Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    CAS  Google Scholar 

  • Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polymer J 45:967–984

    CAS  Google Scholar 

  • Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25:932–936

    CAS  Google Scholar 

  • Coma V, Sebti I, Pardon P, Deschamps A, Pichavant FH (2001) Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit ilisteria innocua and staphylococcus aureus. J Food Prot 64:470–475

    CAS  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That M-T, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    CAS  Google Scholar 

  • de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595–606

    Google Scholar 

  • de Moura MR, Aouada FA, Avena-Bustillos RJ, McHugh TH, Krochta JM, Mattoso LHC (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92:448–453

    Google Scholar 

  • Dean K, Yu L, Wu DY (2007) Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67:413–421

    CAS  Google Scholar 

  • Duanmu J, Gamstedt EK, Rosling A (2007) Hygromechanical properties of composites of crosslinked allylglycidyl-ether modified starch reinforced by wood fibres. Compos Sci Technol 67:3090–3097

    CAS  Google Scholar 

  • Dufresne A, Cavaillé J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76:2080–2092

    CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    CAS  Google Scholar 

  • Ek M, Gellerstedt G, Henriksson G (2009) Pulping chemistry and technology, vol 2

    Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Google Scholar 

  • Fahma F, Iwamoto S, Hori N, Iwata T, Takemura A (2010) Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17:977–985

    CAS  Google Scholar 

  • Frenot A, Henriksson MW, Walkenstrom P (2007) Electrospinning of cellulosebased nanofibers. J Appl Polym Sci 103(3):1473–1482

    CAS  Google Scholar 

  • Fuad MYA, Ismail Z, Ishak ZAM, Omar AKM (1998) Rice husk ash. In: Pritchard G (ed) Plastics additives. Springer, Berlin, pp 561–566

    Google Scholar 

  • Habibi Y, Heux L, Mahrouz M, Vignon MR (2008) Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr Polym 72:102–112

    CAS  Google Scholar 

  • Hadwiger LA, Kendra DF, Fristensky BW, Wagoner W (1986) Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Muzzarelli R, Jeuniaux C, Gooday G (eds) Chitin in nature and technology. Springer, US, pp 209–214

    Google Scholar 

  • Hambali E, Thahar A, Komarudin A (2010) The potential of oil palm and rice biomass as bioenergy feedstock. In: 7th biomass Asia workshop. Jakarta, Indonesia

    Google Scholar 

  • Hamzah F, Idris A, Shuan TK (2011) Preliminary study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of cellulase and β 1-4 glucosidase. Biomass Bioenergy 35:1055–1059

    CAS  Google Scholar 

  • Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose I crystalline domains. Carbohydr Polym 61(2):191–197

    CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43(48):3434–3441

    CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hiltner A, Liu RYF, Hu YS, Baer E (2005) Oxygen transport as a solid-state structure probe for polymeric materials: a review. J Polym Sci, Part B: Polym Phys 43:1047–1063

    CAS  Google Scholar 

  • Hossain MD, Hanafi MM, Jol H, Hazandy AH (2011) Growth, yield and fiber morphology of kenaf (Hibiscus cannabinus L.) grown on sandy bris soil as influenced by different levels of carbon. Afr J Biotechnol 10:10087–10094

    CAS  Google Scholar 

  • Huang M-F, Yu J-G, Ma X-F (2004) Studies on the properties of Montmorillonite-reinforced thermoplastic starch composites. Polymer 45:7017–7023

    CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of woodcellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398

    CAS  Google Scholar 

  • Jayaraman K (2003) Manufacturing sisal–polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374

    CAS  Google Scholar 

  • John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Hussein MZ, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307

    CAS  Google Scholar 

  • Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095

    CAS  Google Scholar 

  • Khan ARAK, Salmieri Stephane, Le Tien Canh, Riedl Bernard, Bouchard Jean, Chauve Gregory, Tan Victor, Kamal Musa R, Lacroix Monique (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    CAS  Google Scholar 

  • Kim EG, Kim BS, Kim DS (2007) Physical properties and morphology of polycaprolactone/starch/pine-leaf composites. J Appl Polym Sci 103(2):928–934

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    CAS  Google Scholar 

  • Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233:201–209

    CAS  Google Scholar 

  • Kumar S, Negi YS, Upadhyaya JS (2010) Studies on characterization of corn cob based nanoparticles. Adv Mater Lett 1:246–253

    Google Scholar 

  • Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68:146–158

    CAS  Google Scholar 

  • Lagaron JM, Garcia S (2008) Thermoplastic nanobiocomposites for rigid and flexible food packaging applications. Woodhead Publishers, Boca Raton

    Google Scholar 

  • Lavoine N, Desloges I, Khelifi B, Bras J (2014) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49:2879–2893

    CAS  Google Scholar 

  • Lee SY, Xu YX, Hanna MA (2007) Tapioca starch-poly (lactic acid)-based nanocomposite foams as affected by type of nanoclay. Int Polym Process 22(5):429–435

    Google Scholar 

  • Lee B-H, Kim H-S, Lee S, Kim H-J, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    CAS  Google Scholar 

  • Li L-H, Deng J-C, Deng H-R, Liu Z-L, Li X-L (2010) Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chem Eng J 160:378–382

    CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    CAS  Google Scholar 

  • Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    CAS  Google Scholar 

  • Liu K, Lin X, Chen L, Huang L, Cao S, Wang H (2013) Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567

    CAS  Google Scholar 

  • Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5:1046–1051

    CAS  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204

    CAS  Google Scholar 

  • Ludueña LN, Alvarez VA, Vazquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng, A 460–461:121–129

    Google Scholar 

  • Ma X, Chang PR, Yu J (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 72:369–375

    CAS  Google Scholar 

  • Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Memb Sci 265(1–2):115–123

    CAS  Google Scholar 

  • Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576

    CAS  Google Scholar 

  • Melo Cd, Garcia PS, Grossmann MVE, Yamashita F, Dall’Antônia LH, Mali S (2011) Properties of extruded xanthan-starch-clay nanocomposite films. Braz Arch Biol Technol 54:1223–1333

    Google Scholar 

  • Mogri Z, Paul DR (2001) Water-vapor permeation in semicrystalline and molten poly(octadecyl acrylate). J Polym Sci, Part B: Polym Phys 39:979–984

    CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    CAS  Google Scholar 

  • Morán JI, Alvarez VA, Cyras VP, Vázquez A (2007) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    CAS  Google Scholar 

  • Mun TK (2011) Development of Malaysia Biomass Industry Technical Coach EU-Malaysia Biomass Sustainable Production Initiative. In: (Biomass-SP) Briefing session to financial institution on green technology financing 6. Cyberjaya

    Google Scholar 

  • Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552

    CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159

    CAS  Google Scholar 

  • Nakagaito AN, Yano H (2008) The effect of fiber content on the mechanical and thermal expansion properties of biocomposites based on microfibrillated cellulose. Cellulose 15:555–559

    CAS  Google Scholar 

  • Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63:1281–1286

    CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    CAS  Google Scholar 

  • Phiriyawirut M (2012) Cellulose microfibril from banana peels as a nanoreinforcing fillers for zein films. Open J Polym Chem 02:56–62

    CAS  Google Scholar 

  • Pitak N, Rakshit SK (2011) Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving fresh-cut vegetables. LWT—Food Sci Technol 44:2310–2315

    CAS  Google Scholar 

  • Ramanaiah K, Ratna Prasad AV, Chandra Reddy KH (2011) Mechanical properties and thermal conductivity of typha angustifolia natural fiber-reinforced polyester composites. Int J Polym Anal Charact 16:496–503

    CAS  Google Scholar 

  • Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    CAS  Google Scholar 

  • Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci

    Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    CAS  Google Scholar 

  • Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites, 37, CRS Press, Florida

    Google Scholar 

  • Sae-Oui P, Rakdee C, Thanmathorn P (2002) Use of rice husk ash as filler in natural rubber vulcanizates: in comparison with other commercial fillers. J Appl Polym Sci 83:2485–2493

    CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996

    CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    CAS  Google Scholar 

  • Salajkova M, Valentini L, Zhou Q, Berglund LA (2013) Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Compos Sci Technol 87:103–110

    CAS  Google Scholar 

  • Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014a) Starch based biofilm reinforced with empty fruit bunch (EFB). Mater Res Innov 18(S6), S6-322–S6-325

    Google Scholar 

  • Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014b) Starch based active packaging film reinforced with empty fruit bunch (EFB) cellulose nanofiber. Procedia Chem 9:23–33

    Google Scholar 

  • Salleh E, Muhamad II, Khairuddin N (2007) Inhibition of Bacillus subtilis and Escherichia coli by antimicrobial starch-based film incorporated with lauric acid and chitosan. In: Proceedings of the 3rd CIGR section Vl international symposium on food and agricultural products: processing and innovation. Naples, ltaly

    Google Scholar 

  • Samir MASA, Alloin F, Paillet M, Dufresne A (2004) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316

    CAS  Google Scholar 

  • Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21:528–536

    CAS  Google Scholar 

  • Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    CAS  Google Scholar 

  • Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151

    CAS  Google Scholar 

  • Shi Q, Vitchuli N, Nowak J, Jiang S, Caldwell JM, Breidt F, Bourham M, Zhang X, McCord M (2013) Multifunctional and durable nanofiber-fabric-layered composite for protective application. J Appl Polym Sci 128:1219–1226

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Mechanical properties of natural fibre reinforced polymer composites. Bull Mater Sci 31:791–799

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009a) Grewia optiva fiber reinforced novel, low cost polymer composites. E-J Chem 6:71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Synthesis, characterisation and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010a) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010b) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    CAS  Google Scholar 

  • Som C, Berges M, Chaudhry Q, Dusinska M, Fernandes TF, Olsen SI, Nowack B (2010) The importance of life cycle concepts for the development of safe nanoproducts. Toxicology 269:160–169

    CAS  Google Scholar 

  • Sousa-Gallagher MJ, Mahajan PV, Mezdad T (2013) Engineering packaging design accounting for transpiration rate: model development and validation with strawberries. J Food Eng 119:370–376

    Google Scholar 

  • Soykeabkaew N, Supaphol P, Rujiravanit R (2004) Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydr Polym 58:53–63

    CAS  Google Scholar 

  • Soykeabkaew N, Laosat Nittaya, Ngaokla Atitaya, Yodsuwan Natthawut, Tunkasiri Tawee (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos Sci Technol 72:845–852

    CAS  Google Scholar 

  • Sreekala MS, Kumaran MG, Thomas S (1997) Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821–835

    CAS  Google Scholar 

  • Sulaiman F, Abdullah N, Gerhauser H, Shariff A (2011) An outlook of Malaysian energy, oil palm industry and its utilization of wastes as useful resources. Biomass Bioenergy 35:3775–3786

    Google Scholar 

  • Sun J-X, Sun R, Sun X-F, Su Y (2004) Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr Res 339:291–300

    CAS  Google Scholar 

  • Suradi SS, Yunus RM, Beg MDH,Yusof ZAM (2009) Influence pre-treatment on the properties of lignocellulose based composite. In: National conference on postgraduate research (ncon-pgr). UMP Conference Hall, Malaysia: Centre for Graduate Studies, Universiti Malaysia Pahang

    Google Scholar 

  • Thakur VK, Singha AS (2011) Physicochemical and mechanical behavior of cellulosic pine needle-based biocomposites. Int J Polym Anal Charact 16:390–398

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014c) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011a) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    Google Scholar 

  • Thakur VK, Tan EJ, Lin M-F, Lee PS (2011b) Polystyrene grafted polyvinylidenefluoride copolymers with high capacitive performance. Polym Chem 2:2000–2009

    Google Scholar 

  • Thakur VK, Tan EJ, Lin M-F, Lee PS (2011c) Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. J Mater Chem 21:3751–3759

    Google Scholar 

  • Thakur VK, Singha AS, Kaur I et al (2011d) Studies on analysis and characterization of phenolic composites fabricated from lignocellulosic fibres. Polym Polym Compos 19:505–511

    Google Scholar 

  • Thakur VK, Yan J, Lin M-F et al (2012a) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    CAS  Google Scholar 

  • Thakur VK, Lin M-F, Tan EJ, Lee PS (2012c) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    Google Scholar 

  • Thakur VK, Ding G, Ma J et al (2012d) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096

    Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012e) Surface modification of natural polymers to impart low water absorbency. Int J Polym Anal Charact 17:133–143

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014a) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014b) PMMA-g-SOY as a sustainable novel dielectric material. Rsc Adv 4:18240–18249

    CAS  Google Scholar 

  • Thakur VK, Grewell D, Thunga M, Kessler MR (2014c) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014d) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  • Tunç S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. LWT—Food Sci Technol 44:465–472

    Google Scholar 

  • Turbak AF, Snyder FW,Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential

    Google Scholar 

  • Vilpoux O, Averous L (2004) Starch-based plastics in technology, use and potentialities of Latin American starchy tubers. NGO Raízes and Cargill Foundation-Sao Paolo-Brazil. Book N0. 3., Chap. 18. pp 521–553

    Google Scholar 

  • Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1. Process optimization. J Appl Polym Sci 113(2):1270–1275

    CAS  Google Scholar 

  • Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos Sci Technol 69:1212–1217

    CAS  Google Scholar 

  • Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527

    CAS  Google Scholar 

  • Wang X, Du Y, Luo J, Lin B, Kennedy JF (2007) Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour. Carbohydr Polym 69:41–49

    CAS  Google Scholar 

  • Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer 46:719–724

    CAS  Google Scholar 

  • Wongpanit P, Sanchavanakit N, Pavasant P, Bunaprasert T, Tabata Y, Rujiravanit R (2007) Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur Polym J 43:4123–4135

    CAS  Google Scholar 

  • Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574

    CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96:2026–2032

    CAS  Google Scholar 

  • Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21:185–192

    CAS  Google Scholar 

  • Y JY, Q BY, W WZ, Q XL,G JJ (1997) Application and explore. 22

    Google Scholar 

  • Yano HSJ, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153

    CAS  Google Scholar 

  • Young R (1994) Comparison of the properties of chemical cellulose pulps. Cellulose 1:107–130

    Google Scholar 

  • Zhao H-P, Feng X-Q,Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7):073112

    Google Scholar 

  • Zuluaga R, Putaux J-L, Restrepo A, Mondragon I, Gañán P (2007) Cellulose microfibrils from banana farming residues: isolation and characterization. Cellulose 14:585–592

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Idayu Muhamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Muhamad, I.I., Salehudin, M.H., Salleh, E. (2015). Cellulose Nanofiber for Eco-friendly Polymer Nanocomposites. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_11

Download citation

Publish with us

Policies and ethics