Skip to main content

Investigation Methods of Currents Distribution in Squirrel Cages with Asymmetry

  • Chapter
  • First Online:
Large A.C. Machines

Abstract

This chapter generalizes investigation methods of asymmetrical active U-shaped chain circuits (open and closed) developed in previous chapters. On their basis we obtained important results for practice regularities of currents distribution in asymmetrical squirrel cages (with breakages) induction machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

I. Monographs, Textbooks

  1. Demirchyan K.S., Neyman L.R., Korovkin N.V., Theoretical Electrical Engineering. Moscow, St. Petersburg: Piter, 2009. Vol. 1, 2. (in Russian).

    Google Scholar 

  2. Kuepfmueller K., Kohn G., Theoretische Elektrotechnik und Elektronik. 15 Aufl., Berlin, N.Y: Springer. 2000. (in German).

    Google Scholar 

  3. Richter R., Elektrische Maschinen. Berlin: Springer. Band I, 1924; Band II, 1930; Band III, 1932; Band IV, 1936; Band V, 1950. (in German).

    Google Scholar 

  4. Mueller G., Ponick B., Elektrische Maschinen. N.Y: J. Wiley. 2009. (in German).

    Google Scholar 

  5. Mueller G., Ponick B., Grundlagen elektrischer Maschinen. Springer. 2005. (in German).

    Google Scholar 

  6. Schuisky W., Berechnung elektrischer Maschinen. Wien: Springer. 1960. (in German).

    Google Scholar 

II. Induction Machines. Papers, Inventor’s Certificates

  1. Braun R., Brüche an Käfigwicklungen von Drehfelmaschine. Maschinenschaden, 1959, № 9/10. (in German).

    Google Scholar 

  2. Hiller U., Einfluß fehlender Laeuferstaebe auf die elektrischen Eigenschaften von Kurzschlußlaeufermotoren. ETZ “A”, 1962. №4. (in German).

    Google Scholar 

  3. Ambrosini M., Sacceti R., Circuiti aquivalenti di machine asincroni alimentate con tensioni in sequenze generalizzate di Fortescue. L’Energia Electrica, 1980. №11. (in Italian).

    Google Scholar 

  4. Ambrosini M., Filipetti F., Il metodo dei circuiti equivalente parziale nello studio dei regimi di quasto nei motori asincroni a gabbia. L’Energia Electrica, 1981, №1. (in Italian).

    Google Scholar 

  5. Saccetti R., Troili R., Una tecnica unitaria nello studio dei circuiti a delle motori il metodo dei circuiti equivalente parziale. L’Energia Electrica, 1980, №3. (in Italian).

    Google Scholar 

  6. Boguslawsky I.Z., Currents in a asymmetric short-circuited rotor cage. Power Eng., NY, 1982. № 1.

    Google Scholar 

  7. Boguslawsky I.Z., Demirtschyan K.S., Stationaere Stromverteilung in unregelmaessigen und unsymmetrischen kurzgeschlossenen Laeuferwicklungen von Wechselstrommaschinen. Archiv fuer Elektrotechnik, 1992. №6. (in German).

    Google Scholar 

  8. Antonov V.V., Boguslavsky I.Z., Savelyeva M.G., Calculation of the characteristics of a powerful induction motor with non-linear parameters. In the book. Elektrosila, #35, 1984. (in Russian).

    Google Scholar 

  9. Schuisky W., Brueche im Kurzschlusskaefig eines Induktionsmotors und ihre Einfluesse auf das Verhalten des Motors. Archiv fuer Elektrotechnik, 1941, № 5. (in German).

    Google Scholar 

  10. Williamson S., Smith A.C., Steady – state analysis of 3 – phase cage motors with rotor bar and end ring faults. Proceed. IEE, 1982, №3 (Part B).

    Google Scholar 

  11. Rusek J., Sila electromotoryczna i strumien sprzezony z cewkami pomiarowymi jako wskaznik uszkodzen wirnika silnikow indukcyjnych. Zesz. naukowe Akad. Gorniczo-hutniczej (Krakow), 1988, № 13. (in Polish).

    Google Scholar 

III. Synchronous Machines. Papers, Inventor’s Certificates, Patents

  1. Boguslawsky I.Z., Method of calculating of the active chain-circuits with damaged elements. Electrichestvo, 1984. № 4; 1988. № 8. (in Russian).

    Google Scholar 

  2. Boguslawsky I.Z., Calculating the current distribution on the damper winding of large slow – speed synchronous motors in asynchronous operation. Power Eng. N.Y, 1979. № 3.

    Google Scholar 

  3. Demirchyan K.S., Boguslawsky I.Z., Current flowing in damper winding bars of different resistivity in a heavy- duty low speed motor. Power Eng. N.Y, 1980. № 2.

    Google Scholar 

  4. Boguslawsky I.Z., Currents and harmonic MMFs in a damper winding with damaged bar at a pole. Power Eng., N.Y, 1985. № 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iliya Boguslawsky .

Appendices

Appendix 10.1: Additional Currents in Eq. (10.2) for Squirrel Cage with Two (Not Adjacent) Asymmetrical Bars

The system of equations is given by:

$$ \sum\limits_{\text{i,j}} {{\text{a}}_{\text{i,j}} {\text{C}}_{{{\text{j}} + 2}} } = {\ddot {\text{I}}}_{\text{i}} \quad {\text{at}}\quad{\text{i}},{\text{j}} = 1,2,3,4. $$

Coefficients of system of equations (at \( {\text{N}}_{{{\text{P}}_{1} }} = 0,\,{\text{N}}_{{{\text{P}}_{2} }} = {\text{N}}_{\text{P}} \)):

$$ \begin{aligned} {\text{a}}_{1,1} & = - {\text{a}}_{2} - \frac{{\Delta {\text{Z}}_{0} }}{{{\text{Z}}_{\text{B}} }};\quad{\text{a}}_{1,3} = {\text{a}}_{1}^{{{\text{N}}_{0} - 1}} \left( {1 + \frac{{\Delta {\text{Z}}_{0} }}{{{\text{Z}}_{\text{B}} }}} \right);\quad{\text{a}}_{2,1} = {\text{a}}_{1}^{{{\text{N}}_{\text{P - 1}} }} \left( {1 + \frac{{\Delta {\text{Z}}_{{{\text{N}}_{\text{P}} }} }}{{{\text{Z}}_{\text{B}} }}} \right); \\ {\text{a}}_{2,3} & = - {\text{a}}_{1}^{{{\text{N}}_{\text{P}} - 1}} \left( {1 + {\text{a}}_{1} \frac{{\Delta {\text{Z}}_{{{\text{N}}_{\text{P}} }} }}{{{\text{Z}}_{\text{B}} }}} \right); \\ {\text{a}}_{3,1} & = - {\text{a}}_{1}^{{{\text{N}}_{\text{P}} }} \left( {1 + {\text{a}}_{2} \frac{{\Delta {\text{Z}}_{0} }}{{{\text{Z}}_{\text{B}} }}} \right);\quad{\text{a}}_{3,3} = {\text{a}}_{1}^{{{\text{N}}_{\text{P}} }} \left( {1 + \frac{{\Delta {\text{Z}}_{{{\text{N}}_{\text{P}} }} }}{{{\text{Z}}_{\text{B}} }}} \right);\quad{\text{a}}_{4,1} = 1 + \frac{{\Delta {\text{Z}}_{0} }}{{{\text{Z}}_{\text{B}} }}; \\ {\text{a}}_{4,3} & = - {\text{a}}_{1}^{{{\text{N}}_{ 0} - 1}} \left( {{\text{a}}_{1} + \frac{{\Delta {\text{Z}}_{ 0} }}{{{\text{Z}}_{\text{B}} }}} \right). \\ \end{aligned} $$

Right parts of the system of equations:

$$ \Pi _{1} = {\text{J}}_{0} \frac{{\Delta {\text{Z}}_{0} }}{{{\text{Z}}_{\text{B}} }};\quad\Pi _{2} = {\text{J}}_{{{\text{N}}_{\text{P}} }} \frac{{\Delta {\text{Z}}_{{{\text{N}}_{\text{P}} }} }}{{{\text{Z}}_{\text{B}} }};\quad\Pi _{3} = - {\text{J}}_{\text{NP}} \frac{{\Delta {\text{Z}}_{\text{NP}} }}{{{\text{Z}}_{\text{B}} }};\quad\Pi _{4} = - {\text{J}}_{ 0} \frac{{\Delta {\text{Z}}_{ 0} }}{{{\text{Z}}_{\text{B}} }}. $$

Note: Let us designate for generality the first index at system coefficients \( {\text{a}}_{\text{i,j}} \) as i, and the second—as j. At values of i = 1, 2, 3, 4 and at even values j = 2k (for k = 1, 2,…) each coefficient \( {\text{a}}_{\text{i,j}} \) can be obtained from the previous value \( {\text{a}}_{\text{i,j}} \) (for j = 2k–1), if we replace \( {\text{a}}_{1} \,{\text{by}}\,{\text{a}}_{2} \) and, respectively, \( {\text{a}}_{2} \,{\text{by}}\,{\text{a}}_{1} \), for example \( {\text{a}}_{ 1 , 2} \)—from \( {\text{a}}_{1,1} ,{\text{a}}_{4,4} \)—from \( {\text{a}}_{ 3 , 4} \), etc.

Appendix 10.2: Additional Currents in Eqs. (10.6) for Squirrel Cage with Three Adjacent Asymmetrical Bars

The system of equations is expressed by:

$$ \sum\limits_{\text{ij}} {{\text{a}}_{\text{i,j}} {\text{C}}_{\text{j}} =\Pi _{\text{i}} } \;{\text{at}}\;{\text{i, j}} = 1 , 2 , 3 , 4. $$

Coefficients in the system of equations (see Note to Appendix 10.1):

$$ \begin{aligned} {\text{a}}_{1,2} & = 1 + \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{1,3} = - {\text{a}}_{1} - {\text{a}}_{1}^{2} \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{1,4} = - {\text{a}}_{2} - {\text{a}}_{2}^{2} \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{2,1} = 1 + \frac{{\Delta \text{Z}_{1} }}{{\text{Z}_{\text{B}} }}; \\ {\text{a}}_{2,2} & = - {\text{a}}_{1} - {\text{a}}_{2} - \frac{{\Delta \text{Z}_{1} }}{{\text{Z}_{\text{B}} }} - \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{2,3} = {\text{a}}_{1}^{2} \left( {1 + \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{2,4} = {\text{a}}_{2}^{2} \left( {1 + \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }}} \right); \\ {\text{a}}_{3,1} & = - {\text{a}}_{1} - {\text{a}}_{2} - \frac{{\Delta \text{Z}_{1} }}{{\text{Z}_{\text{B}} }} - \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{3,2} = {\text{a}}_{2,1};\quad{\text{a}}_{3,3} = {\text{a}}_{1}^{{\text{N}_{0} - 1}} \left( {1 + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right); \\ {\text{a}}_{3,4} & = {\text{a}}_{2}^{{\text{N}_{0} - 1}} \left( {1 + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{4,1} = 1 + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{4,3} = - {\text{a}}_{1}^{{\text{N}_{0} - 1}} \left( {{\text{a}}_{1} + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right); \\ {\text{a}}_{4,4} & = - {\text{a}}_{2}^{{\text{N}_{0} - 1}} \left( {{\text{a}}_{2} + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{1,1} = {\text{a}}_{4,2} = 0. \\ \end{aligned} $$

Right parts of the system of equations:

$$ \Pi _{1} = \text{J}_{2} \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{2} = - \text{J}_{2} \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }} + \text{J}_{1} \frac{{\Delta \text{Z}_{1} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{3} = - \text{J}_{1} \frac{{\Delta \text{Z}_{1} }}{{\text{Z}_{\text{B}} }} + \text{J}_{0} \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{4} = - \text{J}_{0} \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}. $$

Appendix 10.3: Additional Currents in Eq. (10.7) for Squirrel Cage with Three Asymmetrical Bars: Two Bars Nearby, the Third—Next but One

The system of equations:

$$ \sum\limits_{{\text{i},\text{j}}} {{\text{a}}_{{\text{i},\text{j}}} } \text{C}_{\text{j}} =\Pi _{\text{i}} \quad{\text{at}}\quad\text{i},\text{j} = 1,2,3,4,5. $$

Coefficients in the system of equations (see Note to Appendix 10.1):

$$ \begin{aligned} {\text{a}}_{1,3} & = {\text{a}}_{2,4} = {\text{a}}_{2,5} = 1 + \frac{{\Delta \text{Z}_{3} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{1,4} = - {\text{a}}_{1}^{2} - {\text{a}}_{1}^{3} \frac{{\Delta \text{Z}_{3} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{1,5} = - {\text{a}}_{2}^{2} - {\text{a}}_{2}^{3} \frac{{\Delta \text{Z}_{3} }}{{\text{Z}_{\text{B}} }}; \\ {\text{a}}_{2,1} & = {\text{a}}_{2,2} = {\text{a}}_{3,3} = 1 + \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{2,3} = - {\text{a}}_{1} - {\text{a}}_{2} - \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }} - \frac{{\Delta \text{Z}_{3} }}{{\text{Z}_{\text{B}} }}; \\ {\text{a}}_{3,1} & = - {\text{a}}_{1} \left( {{\text{a}}_{1} + \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{3,2} = - {\text{a}}_{2} \left( {{\text{a}}_{2} + \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{4,1} = - {\text{a}}_{2} - \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}; \\ {\text{a}}_{4,2} & = - {\text{a}}_{1} - \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{4,4} = {\text{a}}_{5,1} {\text{a}}_{1}^{{\text{N}_{0} - 1}} ; \\ {\text{a}}_{4,5} & = {\text{a}}_{5,1} {\text{a}}_{2}^{{\text{N}_{0} - 1}} ;\quad{\text{a}}_{5,1} = 1 + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }} = {\text{a}}_{5,2} ;\quad{\text{a}}_{5,4} = - {\text{a}}_{1}^{{{\text{N}}_{0} - 1}} \left( {{\text{a}}_{1} + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right); \\ {\text{a}}_{5,5} & = - {\text{a}}_{2}^{{\text{N}_{0} - 1}} \left( {{\text{a}}_{2} + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{1,1} = {\text{a}}_{1,2} = {\text{a}}_{3,4} = {\text{a}}_{3,5} = {\text{a}}_{4,3} = {\text{a}}_{5,3} = 0. \\ \end{aligned} $$

Right parts of the system of equations:

$$ \Pi _{1} = \text{J}_{3} \frac{{\Delta \text{Z}_{3} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{2} = - \text{J}_{3} \frac{{\Delta \text{Z}_{3} }}{{\text{Z}_{\text{B}} }} + \text{J}_{2} \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{3} = - \text{J}_{2} \frac{{\Delta \text{Z}_{2} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{4} = \text{J}_{0} \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{5} = -\Pi _{4} . $$

Appendix 10.4: Additional Currents in Eq. (10.8) for Squirrel Cage with Three Asymmetrical Bars: Three Bars, Not Adjacent

The system of equations:

$$ \sum\limits_{\text{i,j}} {{\text{a}}_{\text{i,j}} {\text{C}}_{\text{j}} } =\Pi _{\text{i}} \;{\text{at}}\;{\text{i}},{\text{j}} = 1,2,3,4,5,6. $$

Coefficients in the system of equations (see Note to Appendix 10.1 ):

$$ \begin{aligned} {\text{a}}_{1,1} & = {\text{a}}_{1,2} = 1 + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{1,5} = - {\text{a}}_{1}^{{\text{N}_{0} }} \left( {{\text{a}}_{1} + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{1,6} = - {\text{a}}_{2}^{{\text{N}_{0} - 1}} \left( {{\text{a}}_{2} + \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }}} \right); \\ {\text{a}}_{2,1} & = - {\text{a}}_{2} - \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{2,2} = - {\text{a}}_{1} - \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad{\text{a}}_{2,5} = {\text{a}}_{1}^{{\text{N}_{0} - 1}} {\text{a}}_{1,1} ;\quad{\text{a}}_{2,6} = {\text{a}}_{2}^{{\text{N}_{0} - 1}} {\text{a}}_{1,1} ; \\ {\text{a}}_{3,1} & = {\text{a}}_{1}^{{\text{N}_{\text{P}} - 1}} \left( {1 + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{3,2} = {\text{a}}_{2}^{{\text{N}_{{\text{P}_{1} }} - 1}} \left( {1 + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right); \\ {\text{a}}_{3,3} & = - {\text{a}}_{1}^{{\text{N}_{{\text{P}_{1} }} - 1}} \left( {1 + {\text{a}}_{1} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{3,4} = - {\text{a}}_{2}^{{\text{N}_{{\text{P}_{1} }} - 1}} \left( {1 + {\text{a}}_{2} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right); \\ \end{aligned} $$
$$ \begin{aligned} & {\text{a}}_{4,1} = - {\text{a}}_{1}^{{\text{N}_{{\text{P}_{1} }} }} \left( {1 + {\text{a}}_{2} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{4,2} = - {\text{a}}_{2}^{{\text{N}_{{\text{P}_{1} }} }} \left( {1 + {\text{a}}_{1} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{4,3} = {\text{a}}_{1}^{{\text{N}_{{\text{P}_{1} }} }} \left( {1 + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right) \\ & {\text{a}}_{4,4} = - {\text{a}}_{2}^{{\text{N}_{{\text{P}_{1} }} }} \left( {1 + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{5,3} = - {\text{a}}_{1}^{{\text{N}_{{\text{P}_{2} }} }} \left( {1 + {\text{a}}_{2} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{5,4} = - {\text{a}}_{2}^{{\text{N}_{{\text{P}_{2} }} }} \left( {1 + {\text{a}}_{1} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}} \right) \\ & {\text{a}}_{5,5} = {\text{a}}_{1}^{{\text{N}_{{\text{P}_{2} }} }} \left( {1 + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{5,6} = {\text{a}}_{1}^{{\text{N}_{{\text{P}_{2} }} }} \left( {1 + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{6,3} = {\text{a}}_{2} {\text{a}}_{5,5} ;\quad{\text{a}}_{6,4} = - {\text{a}}_{1} {\text{a}}_{5,6} \\ & {\text{a}}_{6,5} = - {\text{a}}_{1}^{{\text{N}_{{\text{P}_{2} }} }} \left( {{\text{a}}_{2} + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}} \right);\quad{\text{a}}_{6,6} = - {\text{a}}_{2}^{{\text{N}_{{\text{P}_{2} }} }} \left( {a_{1} + \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}} \right); \\ & {\text{a}}_{1,3} = {\text{a}}_{1,4} = {\text{a}}_{2,3} = {\text{a}}_{2,4} = {\text{a}}_{3,5} = {\text{a}}_{3,6} = {\text{a}}_{4,5} = {\text{a}}_{4,6} = {\text{a}}_{5,1} = {\text{a}}_{5,2} = {\text{a}}_{6,1} = {\text{a}}_{6,2} = 0. \\ \end{aligned} $$

Right parts of the system of equations:

$$ \begin{aligned} &\Pi _{1} = - \text{J}_{0} \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{2} = \text{J}_{0} \frac{{\Delta \text{Z}_{0} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{3} = \text{J}_{{\text{N}_{{\text{P}_{1} }} }} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }}; \\ &\Pi _{4} = - \text{J}_{{\text{N}_{{\text{P}_{1} }} }} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{1} }} }} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{5} = - \text{J}_{{\text{N}_{{\text{P}_{2} }} }} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }};\quad\Pi _{6} = \text{J}_{{\text{N}_{{\text{P}_{2} }} }} \frac{{\Delta \text{Z}_{{\text{N}_{{\text{P}_{2} }} }} }}{{\text{Z}_{\text{B}} }}. \\ \end{aligned} $$

Brief Conclusions

  1. 1.

    Investigation methods of symmetrical active open and closed chain circuits are generalized and used to study asymmetrical chain circuits class (open and closed). As a result of their generalization it has become possible to obtain regularities of currents distribution, important for practice, in asymmetrical squirrel cages (with damages). In particular, the following regularities of currents distribution in asymmetrical squirrel cage elements of induction machine are obtained:

    • besides currents for symmetrical squirrel cage elements there are additional currents with two components;

    • both components vary depending on the number of bar ring portion under the aperiodic law, one of which fades with increase of this number in amplitude, and another—increases.

  2. 2.

    The general problem to compute currents distribution in short-circuited rotor cage with P asymmetrical bars is reduced to the solution of algebraic system in general case of r linear equations (r \( \le \) 2P + 2); its order does not depend on total number \( \text{N}_{0} \) of bars in cage. This method has essential advantages in comparison with numerical methods based on the solution of a system of Kirchhoff’s equations for \( \text{N}_{0} \) loops. In practical problems \( \text{N}_{0} \le 70,\;{\text{and}}\;\text{P} \le \text{3} - \text{4} \). For small slips, real and imaginary parts of some system coefficients differ in several dozen times, therefore in practice, the solution of systems of high order \( \text{N}_{0} \) with complex coefficients using numerical methods meets difficulties.

  3. 3.

    Besides the general problem, its special cases representing independent practical interest are solved:

    • asymmetrical squirrel cage with one and two damaged bars;

    • asymmetrical squirrel cage with three adjacent damaged bars;

    • asymmetrical squirrel cage with three damaged bars: two bars nearby, the third—next but one;

    • asymmetrical squirrel cage with three damaged bars: three bars, not adjacent.

List of Symbols

\( {\text{C}}_{1} , \ldots ,{\text{C}}_{{{\text{N}}_{\text{T}} }} , \ldots ,{\text{D}}_{ 0} , \ldots ,{\text{D}}_{{{\text{N}}_{\text{T}} }} , \ldots \) :

Constants for calculating currents determined from both Kirchhoff’s laws;

\( \text{E}_{{\text{N}_{\text{P}} ,\text{N}_{\text{P}} - 1}} \) :

EMF in the loop \( \left( {\text{N}_{\text{P}} ,\text{N}_{\text{P}} - 1} \right) \), induced by the resulting field in air gap;

\( \underline{\underline{\text{I}}}_{\text{N}} ,\underline{\underline{\text{J}}}_{\text{N}} \) :

Currents in ring portions (segments) and in bars of squirrel cage at emergence of asymmetry (damage);

\( \text{I}_{\text{N}} ,\text{J}_{\text{N}} \) :

Currents in ring portions (segments) and in bars of squirrel cage before asymmetry emergence;

\( \Delta \text{I}_{{(\text{N})}} ,\Delta \text{J}_{{(\text{N})}} \) :

Additional currents in bars and ring portions of asymmetrical squirrel cage;

N:

Bar (ring portion) number of squirrel cage;

\( \text{N}_{0} \) :

Number of squirrel cage bars;

\( \text{N}_{{\text{P}_{1} }} ,\text{N}_{{\text{P}_{2} }} \) :

Numbers of asymmetrical bars of squirrel cage;

\( \text{Z}_{\text{B}} \) :

Impedance of the symmetrical (undamaged) bar;

\( \text{Z}_{\text{R}} \) :

Impedance of the ring portion between two adjacent bars;

\( \text{Z}_{{\text{N}_{\text{P}} }} , \ldots ,\text{Z}_{{\text{N}_{\text{R}} }} , \ldots ,\text{Z}_{{\text{N}_{\text{S}} }} \) :

Impedances of asymmetrical (damaged) bars;

\( \Delta \text{Z}_{{\text{N}_{\text{P}} }} , \ldots ,\Delta \text{Z}_{{\text{N}_{\text{R}} }} , \ldots ,\Delta \text{Z}_{{\text{N}_{\text{S}} }} \) :

Additional impedances of asymmetrical (damaged) bars

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Boguslawsky, I., Korovkin, N., Hayakawa, M. (2017). Investigation Methods of Currents Distribution in Squirrel Cages with Asymmetry. In: Large A.C. Machines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56475-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56475-1_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56473-7

  • Online ISBN: 978-4-431-56475-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics