Skip to main content

Thin Film Encapsulation

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes

Abstract

This chapter describes the different methods to create a very thin encapsulation coating on the display to protect it from the environment and to guarantee a lifetime, which exceeds 10 years of operation. By coating the device from both sides, one can create displays, which are fully flexible. Failure modes and the problems creating such coatings are discussed in detail. The concept of multilayer barriers is introduced. The multilayers deal with defects in the single layers and with particles that are being generated in the OLED and in the encapsulation process. The different methods to create inorganic barrier films, PECVD (plasma-enhanced chemical vapor deposition), ALD (atomic layer deposition), and PVD (physical vapor deposition), are analyzed in different subsections as well as methods to create both organic and hybrid layers for the planarization layers. Much attention is spent on boundary conditions which successful integration with the OLED device puts on the processes being employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdulagatov AI, Yan Y, Cooper JR, Zhang Y, Gibbs ZM, Cavanagh AS, Yang RG, Lee YC, George SM (2012) Al2O3 and TiO2 atomic layer deposition on copper for water corrosion resistance. ACS Appl Mater Interfaces 3(12):4593–4601

    Article  Google Scholar 

  • Affinito JD, Gross ME, Coronado CA, Graff GL, Greenwell IN, Martin PM (1996) A new method for fabricating transparent barrier layers. Thin Solid Films 290:63–67

    Article  ADS  Google Scholar 

  • Aixtron SE. Herzogenrath, Germany (2018) (Proprietary) “PECVD to deposit flexible barrier films for thin-film encapsulation OPTACAP™” at https://www.aixtron.com/en/products/technologies/ consulted on 4/17/2018

  • Akedo K, Miura A, Fujikawa H, Taga Y (2005) Plasma-CVD SiNx/plasma-polymerized CNx:H multi-layer passivation films for organic light-emitting diodes. R&D Rev Toyota CRDL 40:40–44

    Google Scholar 

  • Alfonso E, Olaya J, Cubillos G (2012) Thin film growth through sputtering technique and its applications, crystallization – science and technology, Dr. Marcello Andreeta (ed) InTech. Available from thin film growth through sputtering technique and its applications | InTechOpen. https://doi.org/10.5772/35844

  • Amberg-Schwab S, Weber SU (2009) Inorganic-organic polymers in combination with vapor deposited inorganic thin layers: an approach to ultra barrier films for technical applications. Paper presented at LOPE-C, international conference and exhibition for the organic and printed electronics industry, Frankfurt, 23–25 June 2009

    Google Scholar 

  • Applied Materials, Inc. Santa Clara, California, USA (Proprietary)

    Google Scholar 

  • Applied Materials, Press Release (2015) http://www.appliedmaterials.com/company/news/press-releases/2015/10/applied-materials-advances-oled-display-manufacturing-for-flexible-mobile-products-and-curved-tvs. Accessed online 2 July 2016

  • Aresta G, Palmans J, van de Sanden MC, Creatore M (2012) Evidence of the filling of nano-porosity in SiO2-like layers by an initiated-CVD monomer. Microporous Mesoporous Mater 151:434–439

    Article  Google Scholar 

  • Barrow WA, Dickey ER (2009) Roll-to-roll ALD deposition of Al2O3 barrier layers on PET. In: Association of industrial metallizers, coaters and laminators fall technical conference and 23rd international vacuum web coating conference 2009, 17–22 Oct 2009, Amelia Island

    Google Scholar 

  • Bender M (2013) Large area sputter deposition for metal oxide TFT applications using Rotary Cathode Technology. Paper presented at FPD International China meeting, Beijing, China, 11 September 2013. Downloaded from http://topic.cena.com.cn/img/site2/20130913/3c970e04909b139d213116.pdf. 1 Nov 2016

  • Beneq TFS600 Specifications (2016) https://beneq.com/en/thin-films/products/custom-ald-equipment/tfs-600

  • Bouten PC, Slikkerveer PJ, Leterrier Y (2005) Mechanics of ITO on plastic substrates for flexible displays. In: Flexible flat panel displays, vol 3. Wiley, Hoboken, p 99

    Chapter  Google Scholar 

  • Buckley A (2013) The technology and manufacturing of polymer OLED on complementary metal oxide semiconductor (CMOS) microdisplays. In: Buckley A (ed) Organic light-emitting diodes (OLEDs). Materials, devices and applications, vol 459. Elsevier, Amsterdam, NL

    Google Scholar 

  • Bulusu A, Graham S, Bahre H, Behm H, Böke M, Dahlmann R, Hopmann C, Winter J (2015a) The mechanical behavior of ALD-polymer hybrid films under tensile strain. Adv Eng Mater 17(7):1057–1067

    Article  Google Scholar 

  • Bulusu A, Singh A, Wang CY, Dindar A, Fuentes-Hernandez C, Kim H, Cullen D, Kippelen B, Graham S (2015b) Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. J Appl Phys 118(8):085501

    Article  ADS  Google Scholar 

  • Burrows PE, Bulovic V, Forrest SR, Sapochak LS, McCarty DM, Thompson ME (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65(23):2922–2924

    Article  ADS  Google Scholar 

  • Carcia PF, McLean RS, Reilly MH, Groner MD, George SM (2006) Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl Phys Lett 89(3):031915

    Article  ADS  Google Scholar 

  • Carcia PF, McLean RS, Groner MD, Dameron AA, George SM (2009) Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J Appl Phys 106(2):023533

    Article  ADS  Google Scholar 

  • Carcia PF, McLean RS, Reilly MH (2010) Permeation measurements and modeling of highly defective Al2O3 thin films grown by atomic layer deposition on polymers. Appl Phys Lett 97(22):221901

    Article  ADS  Google Scholar 

  • Carcia PF, McLean RS, Li ZG, Reilly MH, Marshall WJ (2012) Permeability and corrosion in ZrO2/Al2O3 nanolaminate and Al2O3 thin films grown by atomic layer deposition on polymers. J Vac Sci Technol A 30(4):5

    Article  Google Scholar 

  • Chu X, Moro L, Rosenblum PM (2007) Barix thin film encapsulation of OLEDs. Manufacturing aspects and high temperature performance. Paper presented at IMID 2007 meeting, Daegu, South Korea, 27–31 August 2007

    Google Scholar 

  • Chu X, Burrows PE, Mast ES, Martin PM, Graff GL, Gross ME, Bonham CC, Bennett WD, Hall MG, Rosenblum MP (2009) Method for edge sealing barrier films. US Patent application 12/345,787. US 2009/0191342 A1. Filing date 25 Oct 1999; Pub. 30 July 2009

    Google Scholar 

  • Coclite AM, Gleason KK (2012) Global and local planarization of surface roughness by chemical vapor deposition of organosilicon polymer for barrier applications. J Appl Phys 111(7):073516

    Article  ADS  Google Scholar 

  • Cunningham KL (2015) A process for using oxide TFTs over LTPS TFTs for OLED-TV manufacturing. Inf Disp 31:28–33

    Google Scholar 

  • Da Silva Sobrinho AS, Czeremuszkin G, Latrèche M, Wertheimer MR (1998) Study of defect numbers and distributions in PECVD SiO2 transparent barrier coatings on PET. MRS Proc 544:245–250

    Article  Google Scholar 

  • Dameron AA, Davidson SD, Burton BB, Carcia PF, McLean RS, George SM (2008) Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J Phys Chem C 112(12):4573–4580

    Article  Google Scholar 

  • Danforth BL, Dickey ER (2014a) High-speed, low-cost ALD processing for barrier films in commercial packaging applications. In: Web coating and handling conference 2014, 19–22 Oct 2014. Association of International Metallizers, Coaters and Laminators, Myrtle Beach

    Google Scholar 

  • Danforth BL, Dickey ER (2014b) UV-curable top coat protection against mechanical abrasion for atomic layer deposition (ALD) thin film barrier coatings. Surf Coat Technol 241:42–147

    Article  Google Scholar 

  • De Geyter N, Morent R, Van Vlierberghe S, Dubruel P, Leys C, Schacht E (2011) Plasma polymerization of siloxanes at atmospheric pressure. Surf Eng 27(8):627–633

    Article  Google Scholar 

  • De Gryse R, Haemers J, Leroy WP, Depla D (2012) Thirty years of rotatable magnetrons. Thin Solid Films 520(18):5833–5845

    Article  ADS  Google Scholar 

  • Dickey E, Barrow WA (2012) High rate roll to roll atomic layer deposition, and its application to moisture barriers on polymer films. J Vac Sci Technol A 30(2):021502

    Article  Google Scholar 

  • DisplayMate Technologies (2015) http://www.displaymate.com/Galaxy_S6_ShootOut_1.htm

  • Erlat AG, Henry BM, Grovenor CR, Briggs GD, Chater RJ, Tsukahara Y (2004) Mechanism of water transport through PET/AlOxNy gas barrier films. J Phys Chem B 108:883–890

    Article  Google Scholar 

  • Ermakova EN, Sysoev SV, Nikulina LD, Tsyrendorzhieva IP, Rakhlin VI, Kosinova ML (2015) Synthesis and characterization of organosilicon compounds as novel precursors for CVD processes. Thermochim Acta 622:2. in press

    Article  Google Scholar 

  • Fahlteich JSM., Wanski T, Schiller N, Schwab SA, Weber U, Miesbauer O, Niarchos EK, Noller K, Boeffel C (2014) The role of defects in single- and multi-layer barriers for flexible electronics. In: Society of Vacuum Coaters 57th annual technical conference, Chicago

    Google Scholar 

  • Gatzen HH, Saile V, Leuthold J (2015) Micro and nano fabrication: tools and processes. Springer, Berlin. P168, Fig. 3.73

    Book  Google Scholar 

  • George SM (2009) Atomic layer deposition: an overview. Chem Rev 110(1):111–131

    Article  Google Scholar 

  • Ghosh A, Gerenser LJ, Jarman CM, Fornalik JE (2005) Thin-film encapsulation of organic light-emitting devices. Appl Phys Lett 86:223503

    Article  ADS  Google Scholar 

  • Graff GL, Gross ME, Hall MG, Mast ES Bonham CC, Martin PM, Shi MK, Mahon JB, Burrows P, Sullivan M (2000) Fabrication of OLED device on engineered plastic substrates. In: Proceedings of 43rd annual technical conference Society of Vaccum Coaters. Dever, 15–20 Apr, p 397

    Google Scholar 

  • Graff GL, Gross ME, Affinito JD, Shi MK, Hall M, Mast E (2003) Environmental barrier material for organic light emitting device and method of making. US Patent 6,522,067 B1. App 09/427,138. Filing date 25 Oct 1999; Pub. 18 Feb 2003

    Google Scholar 

  • Graff GL, Williford RE, Burrows PE (2004) Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation. J Appl Phys 96:1840–1849

    Article  ADS  Google Scholar 

  • Groner MD, Fabreguette FH, Elam JW, George SM (2004) Low-temperature Al2O3 atomic layer deposition. Chem Mater 16(4):639–645

    Article  Google Scholar 

  • Groner MD, George SM, McLean RS, Carcia PF (2006) Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl Phys Lett 88(5):051907

    Google Scholar 

  • Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ (1992) Flexible light-emitting diodes made from soluble conducting polymers. Nature 357:477–479

    Article  ADS  Google Scholar 

  • Hegemann D, Vohrer U, Oehr C, Riedel R (1999) Deposition of SiOx films from O2/HMDSO plasmas. Surf Coat Technol 116:1033–1036

    Article  Google Scholar 

  • Hemerik M, Van Erven R, Vangheluwe R, Yang J, Van Rijswujk T, Winters R, Rens B (2006) 47.4: Lifetime of thin-film encapsulation and its impact on OLED device performance. In: SID symposium digest, vol 37, Blackwell, pp 1571–1574

    Google Scholar 

  • Hess DW (1986) Plasma-surface interactions in plasma-enhanced chemical vapor deposition. Ann Rev Mater Sci 16:163–183

    Article  ADS  Google Scholar 

  • Hong S, Jeon C, Song S, Kim J, Lee J, Kim D, Jeong S, Nam H, Lee J, Yang W, Park S (2014) Development of commercial flexible AMOLEDs. In: SID symposium digest of technical papers, vol 45(1), San Diego, CA, 1–6 June 2014, pp 334–337

    Google Scholar 

  • Hwang DK, Fuentes-Hernandez C, Fenoll M, Yun M, Park J, Shim JW, Knauer KA, Dindar A, Kim H, Kim Y, Kim J (2014) Systematic reliability study of top-gate p- and n-channel organic field-effect transistors. ACS Appl Mater Interfaces 6(5):3378–3386

    Article  Google Scholar 

  • Jen SH, Lee BH, George SM, McLean RS, Carcia PF (2012) Critical tensile strain and water vapor transmission rate for nanolaminate films grown using Al2O3 atomic layer deposition and alucone molecular layer deposition. Appl Phys Lett 101(23):234103

    Article  ADS  Google Scholar 

  • Jeong JK, Jim DU, Shin HS, Lee HJ, Kim M, Ahn TK, Lee J, Mo YG, Chung HK (2007) Flexible full-color AMOLED on ultrathin metal foil. IEEE Electron Device Lett 28:389–391

    Article  ADS  Google Scholar 

  • Kateeva, Press Releas 2013. http://kateeva.com/press-full/kateeva-introduces-yieldjet-an-inkjet-printing-manufacturing-equipment-solution-for-mass-producing-flexible-and-large-size-oleds/. Accessed online 2 July 2016

  • Keuning W, van de Weijer P, Lifka H, Kessels WM, Creatore M (2012) Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx: H stacks. J Vac Sci Technol A 30(1):01A131(1)–01A131(6)

    Article  Google Scholar 

  • Kim TW, Yan M, Erlat AG, McConnelee PA, Pellow M, Deluca J, Feist TP, Duggal AR, Schaepkens M (2005) Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates. J Vac Sci Technol A 23:971–977

    Article  ADS  Google Scholar 

  • Kim H-K, Kim S-W, Kim D-G, Kang J-W, Kim MS, Cho WJ (2007) Thin film passivation of organic light emitting diodes by inductively coupled plasma chemical vapor deposition. Thin Solid Films 515:4758–4762

    Article  ADS  Google Scholar 

  • Kim N, Potscavage WJ Jr, Domercq B, Graham S (2009) A hybrid encapsulation method for organic electronics. Appl Phys Lett 94:16

    Google Scholar 

  • Kim YJ, Kim H, Graham S, Dyer A, Reynolds R (2012) Durable polyisobutylene edge sealants for organic electronics and electrochemical devices. Sol Energy Mater Sol Cells 100:120–125

    Article  Google Scholar 

  • Kubota H, Miyaguchi S, Ishizuka S, Wakimoto T, Funaki J, Fukuda Y, Watanabe T, Ochi H, Sakamoto T, Miyake T, Tsuchida M (2000) Organic LED full color passive-matrix display. J Lumin 87:56–60

    Article  Google Scholar 

  • Kwon JH, Souk J (2017) Fundamentals of flexible OLEDs. In: Display Week 2018 SID International Conference Los Angeles California May 21–26, 2017, Short Course S-3

    Google Scholar 

  • Lau KKS, Gleason KK (2006) Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates): An Experimental Study. Macromolecules 39(10):3688–3694

    Google Scholar 

  • Leterrier Y (2003) Durability of nanosized oxygen-barrier coatings on polymers. Prog Mater Sci 48:1–55

    Article  Google Scholar 

  • Leterrier Y, Fischer C, Médico L, Demarco F, Månson JAE, Bouten P, DeGoede J, Nairn JA (2003) Mechanical properties of transparent functional thin films for flexible displays. In: 46th annual technical conference proceedings

    Google Scholar 

  • Leterrier Y, Singh B, Bouchet J, Manson J-A (2008) Diffusion-barrier coating for protection of moisture and oxygen sensitive devices. International Patent Application WO 2008/122292 filed April 4 2007, published 16 Oct 2008

    Google Scholar 

  • Lewis JS, Weaver MS (2004) Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J Sel Top Quantum Electron 10:45–57

    Article  ADS  Google Scholar 

  • Li Y-S, Tsai C-H, Kao S-H, Wu I-W, Chen J-Z, Wu C-I, Lin C-F, Cheng I-C (2013) Single-layer organic–inorganic-hybrid thin-film encapsulation for organic solar cells. J Phys D Appl Phys 46(43):435502

    Article  Google Scholar 

  • Lifka H, van Esch HA, Rosink JJ (2004) 50.3: thin film encapsulation of OLED displays with a NONON stack. In: SID symposium digest, vol 35(1). Blackwell, pp 1384–1387

    Google Scholar 

  • Lim SF, Wang W, Chua SJ (2001) Degradation of organic light-emitting devices due to formation and growth of dark spots. Mater Sci Eng B 85:154–159

    Article  Google Scholar 

  • Lin, S, Chu, X., Rosenblum, P.M. 2010. Ultra-barrier coatings enabled by inkjet printing. Paper presented at the Spring 2010 Meeting of American Chemical Society-Division of Polymeric Materials: Science and Engineering San Francisco, California, USA, 21–25 Mar 2010, PMSE preprints of volume 102, p 855

    Google Scholar 

  • Lin J-S, Chung M-H, Chen C-M, Juang F-S, Liu L-C (2011) Microwave-assisted synthesis of organic/inorganic hybrid nanocomposites and their encapsulating applications for photoelectric devices. J Phys Org Chem 24(3):193–202

    Article  Google Scholar 

  • Madigan CF, Hauf CR, Barkley LD, Harjee N, Vronsky E, Van Slyke SA (2014) Advancements in inkjet printing for OLED mass production. In: SID symposium digest of technical papers, vol 45. San Diego, CA, 1–6 June 2014, pp 399–402

    Google Scholar 

  • Mandlik P, Gartside J, Han L, Cheng I-C, Wagner S, Silvernail JA, Ma R-Q, Hack R-Q, Brown JJ (2008) A single-layer permeation barrier for organic light-emitting displays. Appl Phys Lett 92:103309

    Article  ADS  Google Scholar 

  • Martin PM (2009) Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew (ed), Elsevier, Amsterdam. ISBN:13:978-0-8155-2031-3

    Google Scholar 

  • McElvain J, Antoniadis H, Hueschen MR, Miller JN, Roitman DM, Sheats JR, Moon RL (1996) Formation and growth of black spots in organic light-emitting diodes. J Appl Phys 80:6002–6007

    Article  ADS  Google Scholar 

  • Meyer J, Schmidt H, Kowalsky W, Riedl T, Kahn A (2010) The origin of low water vapor transmission rates through Al2O3/ZrO2 nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl Phys Lett 96(24):243308–243303

    Article  ADS  Google Scholar 

  • Moro L, Chu X (2010) Multilayer barrier stacks and methods of making multilayer barrier stacks. US Patent 7,648,925. 19 Jan 2010

    Google Scholar 

  • Moro L, Krajewski TL (2010) Encapsulated devices and method of making. US Patent 7,767,498. B2. Application 11/509,837. Filing date 24 Aug 2006; Pub. 3 Aug 2010

    Google Scholar 

  • Moro L, Visser RJ (2007) Displays & lighting: substrate and encapsulation challenges. Paper presented at Printed Electronics USA, Masterclass 2: Displays & Lighting, San Francisco, CA, 12–15 Nov 2007

    Google Scholar 

  • Moro L, Krajewski TA, Rutherford NM, Philips O, Visser RJ, Gross ME, Bennett WD, Graff GL (2004) Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. In: Proceedings of SPIE-the international society for optical engineering 5214(Organic Light-Emitting Materials and Devices VII), pp 83–93

    Google Scholar 

  • Moro L, Chu X, Hirayama H Krajewski TA, Visser RJ (2006) A mass manufacturing process for Barix encapsulation of OLED displays: a reduced number of dyads, higher throughput and 1.5 mm edge seal. In: IMID/IDMC ‘06 digest, Daegu, South Korea, 22–25 August 2006, pp 754–758

    Google Scholar 

  • Moro L, Boesch D, Zeng X (2015) OLED encapsulation. OLED fundamentals: materials, devices, and processing of organic light-emitting diodes, 25. In: Gaspar DJ, Polikarpov E (eds). CRC Press, Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  • Müller KH (1987) Stress and microstructure of sputter-deposited thin films: molecular dynamics investigations. J Appl Phys 62(5):1796–1799

    Article  ADS  Google Scholar 

  • Nisato G, Bouten PCP, Slikkerveer PJ, Bennett WD, Graff GL, Rutherford N, Wiese L (2001) Evaluating high performance diffusion barriers: the calcium test. In: Proceedings Asia display/IDW, pp 1435–1438

    Google Scholar 

  • Nisato G, Klumbies H, Fahlteich J, Müller-Meskamp L, van de Weijer P, Bouten P, Boeffel C, Leunberger D, Graehlert W, Edge S, Cros S, Brewer P, Kucukpinar E, de Girolamo J, Srinivasan P (2014) Experimental comparison of high-performance water vapor permeation measurement methods. Org Electron 15:3746–3755

    Article  Google Scholar 

  • Nishio S (2014) European Patent application 12858332.5 Published 22 Oct 2014. Bulletin 2014/43 European Patent Office

    Google Scholar 

  • Ohsaki H, Tachibana Y, Hayashi A, Mitsui A, Hayashi Y (1999) High rate sputter deposition of TiO2 from TiO2-x target. Thin Solid Films 351(1):57–60

    Article  ADS  Google Scholar 

  • OLED-Inf. https://www.oled-info.com/tags/youm

  • Olson DR, O’Donnell TW (1984) Capacitors containing polyfunctional acrylate polymers as dielectrics. US Patent 4,490,774

    Google Scholar 

  • Park SH, Oh J, Hwang CS, Lee JI, Yang YS, Chu HY (2005) Ultrathin film encapsulation of an OLED by ALD. Electrochem Solid-State Lett 8(2):H21–H23

    Article  Google Scholar 

  • Park JS, Chae H, Chung HK, Lee SI (2011) Thin film encapsulation for flexible AM-OLED: a review. Semicond Sci Technol 26:034001–034008. and references therein

    Article  ADS  Google Scholar 

  • Perrotta A, van Beekum ER, Aresta G, Jagia A, Keuning W, van de Sanden RM, Kessels EW, Creatore M (2014) On the role of nanoporosity in controlling the performance of moisture permeation barrier layers. Microporous Mesoporous Mater 188:163–171

    Article  Google Scholar 

  • Perrotta A, Aresta G, van Beekum ER, Palmans J, van de Weijer P, van de Sanden MR, Kessels WE, Creatore M (2015) The impact of the nano-pore filling on the performance of organosilicon-based moisture barriers. Thin Solid Films 595B:251–257

    Article  ADS  Google Scholar 

  • Philips Lumiblade (2014) http://www.lumiblade-experience.com/

  • PLIANT. EU FP7 project. https://cordis.europa.eu/result/rcn/168358_en.html. Jul 16 2015

  • Potts SE, Keuning W, Langereis E, Dingemans G, van de Sanden MC, Kessels WM (2010) Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films. J Electrochem Soc 157(7):P66-P74

    Google Scholar 

  • Powell A, Rossnagel SM (1999) PVD for microelectronics, sputter deposition applied to semiconductor manufacturing, thin films, vol 26. Academic, New York

    Google Scholar 

  • Ramadas SK, Chua SJ (2010) Nanoparticulate encapsulation barrier stack. US Patent application 12/513,569. US 20100089636 A1. Filing date 6 Nov 2006; Pub. 15 Apr 2010

    Google Scholar 

  • Riedl T, Meyer J, Schmidt H, Winkler T, Kowalsky W (2010) Thin film encapsulation of top-emitting OLEDs using atomic layer deposition. In: Solid-state and organic lighting, SOLED, 21–24 June 2010. Optical Society of America, Karlsruhe

    Google Scholar 

  • Roberts AP, Henry BM, Sutton AP, Grovenor CRM, Briggs GAD, Miyamoto T, Kano M, Tsukahara Y, Yanaka M (2002) Gas permeation in silicon-oxide/polymer (SiO x/PET) barrier films: role of the oxide lattice, nano-defects and macro-defects. J Membr Sci 208(1):75–88

    Article  Google Scholar 

  • Rosink JJ, Lifka H, Rietjens GH, Pierik A (2005) 34.1: ultra-thin encapsulation for large area OLED displays. In: SID symposium digest, vol 36(1). Blackwell, pp 1272–1275

    Google Scholar 

  • Rutherford NM, Moro L, Chu X, Visser RJ (2004) Plastic barrier substrate and thin film encapsulation: progress toward manufacturability. In: Third annual flexible displays and microelectronics conference

    Google Scholar 

  • Samsung Electronics Co. Ltd., Samsung Newsroom (2013) https://news.samsung.com/global/introducing-galaxy-round-in-korea. Accessed online 2 July 2016

  • Samsung/SNU Precision. In: Samsung sector update, 8 Dec 2011. http://equity.co.kr/upfile/issue/2011/12/09/1323391258062.pdf

  • Sang R, Zhang H, Long L, Hua Z, Yu J, Wei B, Wu X, Feng T, Zhang J (2011) Thin film encapsulation for OLED display using silicon nitride and silicon oxide composite film. In: International conference on electronic packaging technology & high density packaging, p 1175

    Google Scholar 

  • Schaepkens M, Kim TW, Erlat AG, Yan M, Flanagan KW, Heller CM, McConnelee PA (2004) Ultrahigh barrier coating deposition on polycarbonate substrates. J Vac Sci Technol A 22:1716–1722

    Article  ADS  Google Scholar 

  • Schaer M, Nuesch F, Berner D, Leo W, Zuppiroli L (2001) Water vapor and oxygen degradation mechanisms in organic light-emitting diodes. Adv Funct Mater 11:116–121

    Article  Google Scholar 

  • Scherer M, Schmitt J, Latz R, Schanz M (1992) Reactive alternating current magnetron sputtering of dielectric layers. J Vac Sci Technol A 10(4):1772–1776

    Article  ADS  Google Scholar 

  • Schiller S, Heisig U, Korndörfer C, Beister G, Reschke J, Steinfelder K, Strümpfel J (1987) Reactive dc high-rate sputtering as production technology. Surf Coat Technol 33:405–423

    Article  Google Scholar 

  • Schiller S, Goedicke K, Reschke J, Kirchhoff V, Schneider S, Milde F (1993) Pulsed magnetron sputter technology. Surf Coat Technol 61(1):331–337

    Article  Google Scholar 

  • Seo SW, Jung E, Lim C, Chae H, Cho SM (2012a) Moisture permeation through ultrathin TiO2 films grown by atomic layer deposition. Appl Phys Express 5(3):035701. (The Japan Society of Applied Physics)

    Article  ADS  Google Scholar 

  • Seo SW, Jung E, Lim C, Chae H, Cho SM (2012b) Water permeation through organic–inorganic multilayer thin films. Thin Solid Films 520(21):6690–6694

    Article  ADS  Google Scholar 

  • Seo SW, Chae H, Seo SJ, Chung HK, Cho SM (2013) Extremely bendable thin-film encapsulation of organic light-emitting diodes. Appl Phys Lett 102:161908

    Article  ADS  Google Scholar 

  • Severin D, Kappertz O, Kubart T, Nyberg T, Berg S, Pflug A, Wuttig M (2006) Process stabilization and increase of the deposition rate in reactive sputtering of metal oxides and oxynitrides. Appl Phys Lett 88(16):161504

    Article  ADS  Google Scholar 

  • Shaw DG, Langlois MG (1994) Use of vapor deposited acrylate coatings to improve the barrier properties of metallized film. In: Proceedings of the annual technical conference-Society of Vacuum Coaters. Society of Vacuum Coaters, pp 240–240

    Google Scholar 

  • Shih KK, Dove DB (1994) Deposition of aluminum oxide films with high refractive index. J Vac Sci Technol A 12(2):321–322

    Article  ADS  Google Scholar 

  • Shin D-Y, Brakke KA (2012) Issues in color filter fabrication with inkjet printing. In: Brand O, Fedder GK, Hierold C, Korvink JG, Tabata O, Smith JS, Shin DH (eds) Inkjet-based micromanufacturing. Wiley, Weinheim, pp 191–213. ISBN 978-3-527-31904-6

    Google Scholar 

  • Spee DA, Schipper MR, van der Werf KHM, Rath JK, Schropp REI (2012) All hot wire CVD organic/inorganic hybrid barrier layers for thin film encapsulation. MRS Proc 1447, mrss12–1447-v08–03. https://doi.org/10.1557/opl.2012.1065. (2012 MRS Spring meeting)

  • Spee DA, Rath JK, Schropp REI (2015) Using hot wire and initiated chemical vapor deposition for gas barrier thin film encapsulation. Thin Solid Films 575:67–71

    Article  ADS  Google Scholar 

  • Sproul WD (1996) New routes in the preparation of mechanically hard films. Science 273(5277):889

    Article  ADS  Google Scholar 

  • Starostin SA, Keuning W, Schalken JP, Creatore M, Kessels WM, Bouwstra JB, de Vries HW (2015) Synergy between plasma-assisted ALD and roll-to-roll atmospheric pressure PE-CVD processing of moisture barrier films on polymers. Plasma Process Polym. https://doi.org/10.1002/ppap.201500096

  • Sullivan AM et al. Vitex presentation at USDC conference San Jose Convention Center, 1–3 Feb 2000

    Google Scholar 

  • Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  ADS  Google Scholar 

  • The Next Web (2013) http://thenextweb.com/gadgets/2013/10/28/it-looks-like-lg-accidentally-announced-the-g-flex-its-6-inch-curved-screen-smartphone/#.tnw_D2n0kI9P

  • Theelen M, Habets D, Staemmler L, Winands H, Bolt P (2012) Localized plasma deposition of organosilicon layers on polymer substrates. Surf Coat Technol 211:9–13

    Article  Google Scholar 

  • Thornton JA (1974) Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol 11(4):666–670

    Article  ADS  Google Scholar 

  • Tohoku Pioneer Corporation. http://pioneer.jp/en/info/globalnetwork/japan/tohokupioneer/mainbusinesses/oled/. Accessed online 2 July 2016

  • Tsukimoto S, Moriyama M, Murakami M (2004) Microstructure of amorphous tantalum nitride thin films. Thin Solid Films 460(1):222–226

    Article  ADS  Google Scholar 

  • Turak A (2013) Interfacial degradation in organic optoelectronics. RSC Adv 3:6188–6225. and references therein

    Article  Google Scholar 

  • Ueno S, Konishi Y, Azuma K (2015) Highly water-impermeable SiNx film prepared using surface-wave-plasma chemical vapor deposition and improvement of the barrier performance for organic light-emitting displays. Thin Solid Films 580:116–119

    Article  ADS  Google Scholar 

  • Väha-Nissi M, Sundberg P, Kauppi E, Hirvikorpi T, Sievänen J, Sood A, Karppinen M, Harlin A (2012) Barrier properties of Al2O3 and alucone coatings and nanolaminates on flexible biopolymer films. Thin Solid Films 520(22):6780–6785

    Article  ADS  Google Scholar 

  • Van Assche VF, Vangheluwe RT, Maes JW, Mischke WS, Bijker MD, Dings FC, Evers MF, Kessels WM, Sanden VD (2004) P-111: a thin film encapsulation stack for PLED and OLED displays. In: SID symposium digest, vol 35(1). Blackwell, pp 695–697

    Google Scholar 

  • van de Weijer P, van Mol T (2009) White paper on the characterization of thin-film barrier layers for protection of organic light-emitting diodes. In: ICT-216641 Fast2light, p 1

    Google Scholar 

  • Van Mol AMB, van de Weijer P, Tanase C (2008) Thin film barrier and film encapsulation technology for flexible OLED lamps. Proc SPIE 6999:46–55

    Google Scholar 

  • Veeco Instruments Inc. (2013) Press Release reported in Business Wire, Oct. 1, 2013 https://www.businesswire.com/news/home/20130919005348/en/Veeco-Purchase-Synos-Technology Consulted on 04/17/2018

  • Villani F, Vacca P, Nenna G, Valentino O, Burrasca G, Fasolino T, Minarini C, della Sala D (2009) Inkjet printed polymer layer on flexible substrate for OLED applications. J Phys Chem C 113(30):13398–13402

    Article  Google Scholar 

  • Visser RJ, Moro L (2010) Encapsulated RGB OLEDs having enhanced optical output. US Patent application 12/341,134. US 20100156277 A1. Filing date 22 Dec 2008; Pub. June 24 2010

    Google Scholar 

  • Vogt BD, Lee H-J, Prabhu VM, DeLongchamp DM, Lin EK, Wu WL, Satija SK (2005) X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J Appl Phys 97(11):114509

    Article  ADS  Google Scholar 

  • Weaver MS, Hewitt RH, Kwong RC, Mao SY, Michalski LA, Ngo T, Rajan K, Rothman MA, Silvernail JA, Bennet WD, Bonham C, Burrows PE, Graff GL, Gross ME, Hall M, Mast E, Martin PM (2001) Flexible organic light emitting devices. Proc SPIE 4295:113

    Article  ADS  Google Scholar 

  • Weaver MS, Michalski LA, Rajan K, Rothman MA, Silvernail JA, Brown JJ, Burrows PE, Graff GL, Gross ME, Martin PM, Hall M (2002) Organic light-emitting devices with extended operating lifetimes on plastic substrates. Appl Phys Lett 81(16):2929–2931

    Article  ADS  Google Scholar 

  • Wickersham CE Jr, Poole JE, Fan JS, Zhu L (2001) Video analysis of inclusion induced macroparticle emission from aluminum sputtering targets. J Vac Sci Technol A 19(6):2741–2750

    Article  ADS  Google Scholar 

  • Wong FL, Fung MK, Tao SL, Lai SL, Tsang WM, Kong KH, Choy WM, Lee CS, Lee ST (2008) Long-lifetime thin-film encapsulated organic light-emitting diodes. J Appl Phys 104(1):4509

    Article  ADS  Google Scholar 

  • Yamada Y, Iseki K, Okuyama T, Ohya T, Morihara Y (1995) The properties of a new transparent and colorless barrier film. In: Proceedings of the annual technical conference-Society of Vacuum Coaters. Society of Vacuum Coaters, pp 28–32

    Google Scholar 

  • Yasuda H (1985) Plasma polymerization. Academic, Orlando

    Google Scholar 

  • Yoshida A, Fujimura S, Miyake T, Yoshizawa T, Ochi H, Sugimoto A, Kubota H, Miyadera T, Ishizuka S, Tsuchida M, Nakada H (2003) 21.1: invited paper: 3-inch full-color OLED display using a plastic substrate. In: SID symposium digests, vol 34(1). Blackwell, pp 856–859

    Google Scholar 

  • You H-J (2013) Waveguide slot-excited long racetrack electron cyclotron resonance plasma source for roll-to-roll (scanning) processing. Rev Sci Instrum 84:073513

    Article  ADS  Google Scholar 

  • Zambov L, Shamamian V, Weidner K, Loboda M (2011) Advanced roll-to-roll plasma-enhanced CVD silicon carbide barrier technology for protection from detrimental gases. Chem Vap Depos 17:253–260

    Article  Google Scholar 

  • Zhang Y, Yang R, George SM, Lee YC (2011) In-situ inspection of cracking in atomic-layer-deposited barrier films on surface and in buried structures. Thin Solid Films 520(1):251–257

    Article  ADS  Google Scholar 

Download references

Acknowledgments

RJV, LM, and XC warmly recognize all Vitex team members and its partners for the development of the multilayer TFE technology. LM and XC recognize the hardworking Samsung Display U Project team in commercializing the TFE technology and the work of Samsung Cheil (now SDI) on polymer. LM and XC would also like to thank Dr. Martin Rosenblum, a coworker at both Vitex Systems and Samsung Display, for all his support during our stay in Korea scaling TFE technology into production. RJV and LM thank the Applied Materials TFE team for exciting discussions and work on PECVD technology for TFE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Jan Visser .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Visser, R.J. et al. (2018). Thin Film Encapsulation. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics