Skip to main content

Outcoupling Technologies: Concepts, Simulation, and Implementation

  • Living reference work entry
  • First Online:
Handbook of Organic Light-Emitting Diodes

Abstract

Optimizing light out-coupling in organic light-emitting diodes (OLEDs) is at the heart of the development and commercialization of OLEDs for general lighting and display applications as it impacts directly the achievable luminous emission (lm/m2), luminous efficacy (lm/W), and even the lifetime. The improvement of light out-coupling requires having simulation tools at hand to efficiently simulate such OLEDs that include light out-coupling enhancement structures. In this chapter we will first describe the main concepts employed today to improve light out-coupling without employing scattering, and then we will introduce how light scattering-based out-coupling tricks can help to maximize the emitted luminance of the device. On this occasion, we will detail a modeling workflow that allows to accurately simulate OLEDs including scattering structures. In this part, we will make use of simulations in order to optimize the device efficiency. From the simulations it becomes evident that the OLED thin film stack properties and the light scattering structures of the substrate both influence the overall performance and thus have to be jointly optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altazin S, Reynaud C, Mayer UM, Lanz T, Lapagna K, Knaack R, Penninck L, Kirsch C, Pernstich KP, Harkema S, Hermes D, Ruhstaller B (2015) 38.3: simulations, measurements, and optimization of OLEDs with scattering layer. SID Symp Dig Tech Pap 46(1):564–567

    Article  Google Scholar 

  • Baldo MA, O’brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698):151–154

    Article  ADS  Google Scholar 

  • Bathelt R, Buchhauser D, Gärditz C, Paetzold R, Wellmann P (2007) Light extraction from OLEDs for lighting applications through light scattering. Org Electron 8(4):293–299

    Article  Google Scholar 

  • Chance RR, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37(1):65

    Google Scholar 

  • Chen S, Kwok HS (2010) Light extraction from organic light-emitting diodes for lighting applications by sand-blasting substrates. Opt Express 18(1):37

    Article  ADS  Google Scholar 

  • Frischeisen J, Yokoyama D, Adachi C, Brütting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96(7):073302

    Article  ADS  Google Scholar 

  • Greiner H (2007) Light extraction from organic light emitting diode substrates. Simulation and experiment. Jpn J Appl Phys 46:4125–4137

    Article  ADS  Google Scholar 

  • Kaji H, Suzuki H, Fukushima T, Shizu K, Suzuki K, Kubo S et al (2015) Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat Commun 6:8476

    Article  Google Scholar 

  • Kim SY, Jeong WI, Mayr C, Park YS, Kim KH, Lee JH et al (2013) Light-emitting diodes: organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter (Adv. Funct. Mater. 31/2013). Adv Funct Mater 23(31):3829–3829

    Article  Google Scholar 

  • Lanz T, Ruhstaller B, Battaglia C, Ballif C (2011) Extended light scattering model incorporating coherence for thin-film silicon solar cells. J Appl Phys 110(3):033111

    Article  ADS  Google Scholar 

  • Levell JW, Harkema S, Pendyala RK, Rensing PA, Senes, A, Bollen D, … Wilson JS (2013) Device reflectivity as a simple rule for predicting the suitability of scattering foils for improved OLED light extraction. In: SPIE organic photonics+ electronics, International Society for Optics and Photonics, pp 88291L–88291L

    Google Scholar 

  • Möller S, Forrest SR (2002) Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J Appl Phys 91(5):3324–3327

    Article  ADS  Google Scholar 

  • Murano S, Pavicic D, Furno M, Rothe C, Canzler TW, Haldi A et al (2012) 51.2: Outcoupling enhancement mechanism investigation on highly efficient PIN OLEDs using crystallizing evaporation processed organic outcoupling layers. SID Symp Dig Tech Pap 43(1). Blackwell:687–690

    Article  Google Scholar 

  • Penninck L, De Visschere P, Beeckman J, Neyts K (2011) Dipole radiation within one-dimensional anisotropic microcavities: a simulation method. Opt Express 19(19):18558–18576

    Article  ADS  Google Scholar 

  • Pfeiffer M, Leo K, Blochwitz-Niemoth J, Zhou X (2006) U.S. Patent No. 7,074,500. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • PHELOS angular luminescence spectrometer from Fluxim AG (2018) www.fluxim.com, Switzerland

  • Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681

    Article  Google Scholar 

  • Ruhstaller B, Flatz T, Moos M, Sartoris G, Kiy M, Beierlein T, Kern R, Winnewisser C, Pretot R, Chebotareva N, van der Schaaf P (2007) 59.1: Invited paper: optoelectronic OLED modeling for device optimization and analysis. SID Symp Dig Tech Pap 38(1):1686–1690. Blackwell

    Article  Google Scholar 

  • Schwab T, Fuchs C, Scholz R, Zakhidov A, Leo K, Gather MC (2014) Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates. Opt Express 22(7):7524–7537

    Article  ADS  Google Scholar 

  • SETFOS simulation software by Fluxim AG (2018) www.fluxim.com, Switzerland

  • Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428):234–238

    Article  ADS  Google Scholar 

  • Van De Hulst HC (1957) Light scattering by small particles. Courier Dover Publications

    Google Scholar 

  • Yokoyama D, Suzuki Y, Aita W (2015) Super-low-index hole transport layers and their applications for high outcoupling of OLEDs. IMID Digest Proceedings

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Ruhstaller .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Altazin, S., Penninck, L., Ruhstaller, B. (2018). Outcoupling Technologies: Concepts, Simulation, and Implementation. In: Adachi, C., Hattori, R., Kaji, H., Tsujimura, T. (eds) Handbook of Organic Light-Emitting Diodes. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55761-6_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55761-6_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55761-6

  • Online ISBN: 978-4-431-55761-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics