Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  2. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Żukowski, Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  3. S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  MATH  Google Scholar 

  4. P. van Loock, Laser Photonics Rev. 5, 167 (2011)

    Article  Google Scholar 

  5. A. Furusawa, P. van Loock, Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing (Wiley, New York, 2011)

    Book  Google Scholar 

  6. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information Processing (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  7. S. Lloyd, S.L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. L. Vaidman, Phys. Rev. A 49, 1473 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  11. S.L. Braunstein, H.J. Kimble, Nature 394, 840 (1998)

    Article  ADS  Google Scholar 

  12. A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  13. S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)

    Article  ADS  Google Scholar 

  14. N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph, M.A. Nielsen, Phys. Rev. Lett. 97, 110501 (2006)

    Article  ADS  Google Scholar 

  15. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  16. P. Walther, K.J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, A. Zeilinger, Nature 434, 169 (2005)

    Article  ADS  Google Scholar 

  17. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, Nature 445, 65 (2007)

    Article  ADS  Google Scholar 

  18. Y. Tokunaga, S. Kuwashiro, T. Yamamoto, M. Koashi, N. Imoto, Phys. Rev. Lett. 100, 210501 (2008)

    Article  ADS  Google Scholar 

  19. P. van Loock, C. Weedbrook, M. Gu, Phys. Rev. A 76, 032321 (2007)

    Article  ADS  Google Scholar 

  20. M. Yukawa, R. Ukai, P. van Loock, A. Furusawa, Phys. Rev. A 78, 012301 (2008)

    Article  ADS  Google Scholar 

  21. R. Ukai, N. Iwata, Y. Shimokawa, S.C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, A. Furusawa, Phys. Rev. Lett. 106, 240504 (2011)

    Article  ADS  Google Scholar 

  22. R. Ukai, S. Yokoyama, J. Yoshikawa, P. van Loock, A. Furusawa, Phys. Rev. Lett. 107, 250501 (2011)

    Article  ADS  Google Scholar 

  23. S. Yokoyama, R. Ukai, S.C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. Yoshikawa, H. Yonezawa, N.C. Menicucci, A. Furusawa, Nat. Photon. 7, 982 (2013)

    Article  ADS  Google Scholar 

  24. D. Gottesman, I.L. Chuang, Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  25. S.D. Bartlett, W.J. Munro, Phys. Rev. Lett. 90, 117901 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Yoshikawa, T. Hayashi, T. Akiyama, N. Takei, A. Huck, U.L. Andersen, A. Furusawa, Phys. Rev. A 76, 060301(R) (2007)

    Google Scholar 

  27. J. Yoshikawa, Y. Miwa, A. Huck, U.L. Andersen, P. van Loock, A. Furusawa, Phys. Rev. Lett. 101, 250501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Gottesman, A. Kitaev, J. Preskill, Phys. Rev. A 64, 012310 (2001)

    Article  ADS  Google Scholar 

  29. P. Marek, R. Filip, A. Furusawa, Phys. Rev. A 84, 053802 (2011)

    Article  ADS  Google Scholar 

  30. E. Knill, R. Laflamme, G.J. Milburn, Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  31. R. Okamoto, J.L. O’Brien, H.F. Hofmann, S. Takeuchi, Proc. Natl. Acad. Sci. USA 108, 11067 (2011)

    Google Scholar 

  32. R.E.S. Polkinghorne, T.C. Ralph, Phys. Rev. Lett. 83, 2095 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. T. Ide, H.F. Hofmann, T. Kobayashi, A. Furusawa, Phys. Rev. A 65, 012313 (2001)

    Article  ADS  Google Scholar 

  34. E.S. Polzik, J. Carri, H.J. Kimble, Appl. Phys. B 55, 279 (1992)

    Article  ADS  Google Scholar 

  35. Y. Takeno, M. Yukawa, H. Yonezawa, A. Furusawa, Opt. Express 15, 4321 (2007)

    Article  ADS  Google Scholar 

  36. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Phys. Rev. Lett. 104, 251102 (2010)

    Article  ADS  Google Scholar 

  37. N. Takei, N. Lee, D. Moriyama, J.S. Neergaard-Nielsen, A. Furusawa, Phys. Rev. A 74, 060101(R) (2006)

    Google Scholar 

  38. N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, A. Furusawa, Science 332, 330 (2011)

    Article  ADS  Google Scholar 

  39. S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, A. Furusawa, Phys. Rev. A 87, 043803 (2013)

    Article  ADS  Google Scholar 

  40. S. Takeda, T. Mizuta, M. Fuwa, P. van Loock, A. Furusawa, Nature 500, 315 (2013)

    Article  ADS  Google Scholar 

  41. S. Takeda, T. Mizuta, M. Fuwa, H. Yonezawa, P. van Loock, A. Furusawa, Phys. Rev. A 88, 042327 (2013)

    Article  ADS  Google Scholar 

  42. S. Takeda, M. Fuwa, P. van Loock, A. Furusawa, Phys. Rev. Lett. 114, 100501 (2015)

    Article  ADS  Google Scholar 

  43. M. Gu, C. Weedbrook, N.C. Menicucci, T.C. Ralph, P. van Loock, Phys. Rev. A 79, 062318 (2009)

    Article  ADS  Google Scholar 

  44. M. Yukawa, K. Miyata, T. Mizuta, H. Yonezawa, P. Marek, R. Filip, A. Furusawa, Opt. Express 21, 5529 (2013)

    Article  ADS  Google Scholar 

  45. M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, A. Furusawa, Phys. Rev. A 88, 053816 (2013)

    Article  ADS  Google Scholar 

  46. J. Yoshikawa, K. Makino, S. Kurata, P. van Loock, A. Furusawa, Phys. Rev. X 3, 041028 (2013)

    Google Scholar 

  47. S. Sefi, V. Vaibhav, P. van Loock, Phys. Rev. A 88, 012303 (2013)

    Article  ADS  Google Scholar 

  48. Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P.Marek, R. Filip, P. van Loock, A. Furusawa, Phys. Rev. Lett. 113, 013601 (2014)

    Google Scholar 

  49. N.C. Menicucci, Phys. Rev. Lett. 112, 120504 (2014)

    Article  ADS  Google Scholar 

  50. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, J.L. O’Brien, Science 320, 646 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuntaro Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Takeda, S., Furusawa, A. (2016). Optical Hybrid Quantum Information Processing. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_20

Download citation

Publish with us

Policies and ethics