Skip to main content

\(L^2\)-Serre Duality on Singular Complex Spaces and Applications

  • Conference paper
  • First Online:
Complex Analysis and Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 144))

  • 1812 Accesses

Abstract

In this survey, we explain a version of topological \(L^2\)-Serre duality for singular complex spaces with arbitrary singularities. This duality can be used to deduce various \(L^2\)-vanishing theorems for the \(\overline{\partial }\)-equation on singular spaces. As one application, we prove Hartogs’ extension theorem for \((n-1)\)-complete spaces. Another application is the characterization of rational singularities. It is shown that complex spaces with rational singularities behave quite tame with respect to some \(\overline{\partial }\)-equation in the \(L^2\)-sense. More precisely: a singular point is rational if and only if the appropriate \(L^2\)-\(\overline{\partial }\)-complex is exact in this point. So, we obtain an \(L^2\)-\(\overline{\partial }\)-resolution of the structure sheaf in rational singular points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The interest in this setting goes back to the invention of intersection (co-)homology by Goresky and MacPherson which has very tight connections to the \(L^2\)-deRham cohomology of the regular part of a singular variety. We refer here to the solution of the Cheeger-Goresky-MacPherson conjecture [CGM] for varieties with isolated singularities by Ohsawa [O] (see [PS] for more details).

  2. 2.

    A Hermitian complex space (Xg) is a reduced complex space X with a metric g on the regular part such that the following holds: If \(x\in X\) is an arbitrary point there exists a neighborhood \(U=U(x)\) and a biholomorphic embedding of U into a domain G in \({\mathbb {C}}^N\) and an ordinary smooth Hermitian metric in G whose restriction to U is \(g|_U\).

  3. 3.

    This is what we mean by square-integrable up to the singular set.

  4. 4.

    Note that different Hermitian metrics lead to \(\overline{\partial }\)-complexes which are equivalent on relatively compact subsets. So, one can put any Hermitian metric on X in many of the results below.

  5. 5.

    The notation w / s refers either to the index w or the index s in the whole statement.

References

  1. Andersson, M., Samuelsson, H.: A Dolbeault-Grothendieck lemma on complex spaces via Koppelman formulas. Invent. Math. 190(2), 261–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreotti, A., Grauert, H.: Théorème de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France 90, 193–259 (1962)

    MathSciNet  MATH  Google Scholar 

  3. Andreotti, A., Kas, A.: Duality on complex spaces. Ann. Scuola Norm. Sup. Pisa 27(3), 187–263 (1973)

    Google Scholar 

  4. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace Beltrami equation on complex manifolds. Publ. Math. Inst. Hautes Etudes Sci. 25, 81–130 (1965)

    Article  MathSciNet  Google Scholar 

  5. Cheeger, J., Goresky, M., MacPherson, R.: \(L^2\)-Cohomology and Intersection Homology of Singular Algebraic Varieties. Annals of Mathematics Studies, vol. 102, pp. 303–340. Princeton University Press, Princeton (1982)

    Google Scholar 

  6. Coltoiu, M., Ruppenthal, J.: On Hartogs’ extension theorem on \((n-1)\)-complete spaces. J. Reine Angew. Math. 637, 41–47 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Conrad, B.: Grothendieck Duality and Base Change. Lecture Notes in Mathematics, vol. 1750. Springer, Berlin (2000)

    Google Scholar 

  8. Fornæss, J.E., Øvrelid, N., Vassiliadou, S.: Local \(L^2\) results for \(\overline{\partial }\): the isolated singularities case. Int. J. Math. 16(4), 387–418 (2005)

    Article  MATH  Google Scholar 

  9. Grauert, H., Riemenschneider, O.: Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen. Invent. Math. 11, 263–292 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Google Scholar 

  11. Hartshorne, R.: Residues and Duality. Lecture Notes in Mathematics, vol. 20. Springer, Berlin (1966)

    Google Scholar 

  12. Hörmander, L.: \(L^2\)-estimates and existence theorems for the \(\overline{\partial }\)-operator. Acta Math. 113, 89–152 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kollár, J.: Singularities of pairs. Algebraic geometry—Santa Cruz 1995, pp. 221–287 (Proc. Symp. Pure Math. 62, Part 1, Amer. Math. Soc., Providence, RI) (1997)

    Google Scholar 

  14. Merker, J., Porten, E.: The Hartogs’ extension theorem on \((n-1)\)-complete complex spaces. J. Reine Angew. Math. 637, 23–39 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Ohsawa, T.: Cheeger-Goresky-MacPherson’s conjecture for the varieties with isolated singularities. Math. Z. 206, 219–224 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohsawa, T., Takegoshi, K.: On the extension of \(L^2\)-holomorphic functions. Math. Z. 195(2), 197–204 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Øvrelid, N., Vassiliadou, S.: Solving \(\overline{\partial }\) on product singularities. Complex Var. Ellipitic Equ. 51(3), 225–237 (2006)

    Article  Google Scholar 

  18. Øvrelid, N., Vassiliadou, S.: \(L^2\)-\(\overline{\partial }\)-cohomology groups of some singular complex spaces. Invent. Math. 192(2), 413–458 (2013)

    Article  MathSciNet  Google Scholar 

  19. Pardon, W., Stern, M.: \(L^2\)-\(\overline{\partial }\)-cohomology of complex projective varieties. J. Am. Math. Soc. 4(3), 603–621 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Ramis, J.-P., Ruget, G.: Complexe dualisant et théorème de dualité en géométrie analytique complexe. Inst. Hautes Études Sci. Publ. Math. 38, 77–91 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruppenthal, J.: About the \(\overline{\partial }\)-equation at isolated singularities with regular exceptional set. Int. J. Math. 20(4), 459–489 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruppenthal, J.: The \(\overline{\partial }\)-equation on homogeneous varieties with an isolated singularity. Math. Z. 263, 447–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ruppenthal, J.: \(L^2\)-theory for the \(\overline{\partial }\)-operator on compact complex spaces. Duke Math. J. 163, 2887–2934 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ruppenthal, J.: \(L^2\)-Serre duality on singular complex spaces and rational singularities. Preprint 2014 (submitted). arXiv:1401.4563

  25. Ruppenthal, J., Samuelsson Kalm, H., Wulcan, E.: Explicit Serre duality on complex spaces. Preprint 2014 (submitted). arXiv:1401.8093

  26. Serre, J.-P.: Un théorème de dualité. Comm. Math. Helv. 29, 9–26 (1955)

    Article  MATH  Google Scholar 

  27. Siu, Y.-T.: Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math. 27, 53–156 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Siu, Y.-T.: Invariance of plurigenera. Invent. Math. 134(3), 661–673 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Takegoshi, K.: Relative vanishing theorems in analytic spaces. Duke Math. J. 51(1), 273–279 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant RU 1474/2 within DFG’s Emmy Noether Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ruppenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this paper

Cite this paper

Ruppenthal, J. (2015). \(L^2\)-Serre Duality on Singular Complex Spaces and Applications. In: Bracci, F., Byun, J., Gaussier, H., Hirachi, K., Kim, KT., Shcherbina, N. (eds) Complex Analysis and Geometry. Springer Proceedings in Mathematics & Statistics, vol 144. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55744-9_23

Download citation

Publish with us

Policies and ethics