Skip to main content

Toward Regenerative Medicine for Muscular Dystrophies

Lessons from Regeneration Processes

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy

Abstract

The US National Institutes of Health defines regenerative medicine as “the process of creating living, functional tissues to repair or replace tissue or organ function lost due to age, disease, damage, or congenital defects.” In many cases, physiological regenerative processes give us multiple clues for creating new therapeutic methodologies. In skeletal muscle fields, the first attempt at regenerative medicine was transplantation of myoblasts into Duchenne muscular (DMD) patients in the early 1990s, but the clinical trials were not successful. At that time, not much was known about the regenerative process in skeletal muscle. However, due to the efforts of scientists and progress in technologies, many important discoveries have emerged. One is the study of muscle stem cells, named satellite cells, and another is identification of muscle-resident mesenchymal progenitors. In this chapter, we focus on satellite cells and mesenchymal progenitors and discuss the newest information concerning them to realize regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Segawa M, Fukada S, Yamamoto Y, Yahagi H, Kanematsu M, Sato M, Ito T, Uezumi A, Hayashi S, Miyagoe-Suzuki Y et al (2008) Suppression of macrophage functions impairs skeletal muscle regeneration with severe fibrosis. Exp Cell Res 314:3232–3244

    Article  CAS  PubMed  Google Scholar 

  2. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C et al (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–1295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    Article  CAS  PubMed  Google Scholar 

  4. Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y et al (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–3664

    Article  CAS  PubMed  Google Scholar 

  5. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  6. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94

    Article  CAS  PubMed  Google Scholar 

  9. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25:2448–2459

    Article  CAS  PubMed  Google Scholar 

  10. Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, Matev MM, Motohashi N, Ito T, Zolkiewska A et al (2011) Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development 138:4609–4619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199:326–337

    Article  CAS  PubMed  Google Scholar 

  12. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi M, Ogawa R, Watanabe Y, Uezumi A, Miyagoe-Suzuki Y, Tsujikawa K, Yamamoto H, Takeda S, Fukada S (2012) Calcitonin receptor and Odz4 are differently expressed in Pax7-positive cells during skeletal muscle regeneration. J Mol Histol 43:581–587

    Article  CAS  PubMed  Google Scholar 

  14. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Asakura A, Rudnicki MA (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30:1339–1345

    Article  PubMed  Google Scholar 

  16. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  CAS  PubMed  Google Scholar 

  17. Fukada S, Miyagoe-Suzuki Y, Tsukihara H, Yuasa K, Higuchi S, Ono S, Tsujikawa K, Takeda S, Yamamoto H (2002) Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci 115:1285–1293

    CAS  PubMed  Google Scholar 

  18. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    CAS  PubMed  Google Scholar 

  19. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    Article  CAS  PubMed  Google Scholar 

  20. Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

    CAS  PubMed  Google Scholar 

  21. Ojima K, Uezumi A, Miyoshi H, Masuda S, Morita Y, Fukase A, Hattori A, Nakauchi H, Miyagoe-Suzuki Y, Takeda S (2004) Mac-1(low) early myeloid cells in the bone marrow-derived SP fraction migrate into injured skeletal muscle and participate in muscle regeneration. Biochem Biophys Res Commun 321:1050–1061

    Article  CAS  PubMed  Google Scholar 

  22. Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852

    Article  CAS  PubMed  Google Scholar 

  23. Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Uezumi A, Ojima K, Fukada S, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S (2006) Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 341:864–873

    Article  CAS  PubMed  Google Scholar 

  25. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656

    Article  CAS  PubMed  Google Scholar 

  27. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C et al (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  CAS  PubMed  Google Scholar 

  29. Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    Article  CAS  PubMed  Google Scholar 

  30. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340

    Article  CAS  PubMed  Google Scholar 

  31. Fukada S, Ma Y, Ohtani T, Watanabe Y, Murakami S, Yamaguchi M (2013) Isolation, characterization, and molecular regulation of muscle stem cells. Front Physiol 4:317

    Article  PubMed Central  PubMed  Google Scholar 

  32. Yamaguchi M, Fukada S (2013) Regulation of muscle stem cell quiescent and undifferentiated state: roles of Hesr1 and Hesr3 genes. In: Hayat MA (ed) Tumor dormancy, quiescence, and senescence, vol 1. Springer, Dordrecht, pp 107–116

    Google Scholar 

  33. Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Uezumi A, Ikemoto-Uezumi M, Tsuchida K (2014) Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Front Physiol 5:68

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, Hansen MS, Angus-Hill M, Kardon G (2011) Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138:371–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Roberts EW, Deonarine A, Jones JO, Denton AE, Feig C, Lyons SK, Espeli M, Kraman M, McKenna B, Wells RJ et al (2013) Depletion of stromal cells expressing fibroblast activation protein-alpha from skeletal muscle and bone marrow results in cachexia and anemia. J Exp Med 210:1137–1151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y et al (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296:245–255

    Article  CAS  PubMed  Google Scholar 

  38. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  39. Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–779

    Article  CAS  PubMed  Google Scholar 

  40. Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6:117–129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    Article  CAS  PubMed  Google Scholar 

  42. Christov C, Chretien F, Abou-Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B et al (2007) Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell 18:1397–1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    Article  CAS  PubMed  Google Scholar 

  45. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601

    Google Scholar 

  47. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110:16747–16749

    Google Scholar 

  48. Seale P, Ishibashi J, Scime A, Rudnicki MA (2004) Pax7 is necessary and sufficient for the myogenic specification of CD45+:Sca1+ stem cells from injured muscle. PLoS Biol 2, E130

    Article  PubMed Central  PubMed  Google Scholar 

  49. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gayraud-Morel B, Chretien F, Flamant P, Gomes D, Zammit PS, Tajbakhsh S (2007) A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol 312:13–28

    Article  CAS  PubMed  Google Scholar 

  52. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965–973

    Article  CAS  PubMed  Google Scholar 

  54. Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y (2001) HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 21:6080–6089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30:232–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S (2012) A critical requirement for Notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30:243–252

    Article  CAS  PubMed  Google Scholar 

  57. Buas MF, Kabak S, Kadesch T (2009) Inhibition of myogenesis by Notch: evidence for multiple pathways. J Cell Physiol 218:84–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Parker MH, Loretz C, Tyler AE, Duddy WJ, Hall JK, Olwin BB, Bernstein ID, Storb R, Tapscott SJ (2012) Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment. Stem Cells 30:2212–2220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Angione AR, Jiang C, Pan D, Wang YX, Kuang S (2011) PPARdelta regulates satellite cell proliferation and skeletal muscle regeneration. Skelet Muscle 1:33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ge X, McFarlane C, Vajjala A, Lokireddy S, Ng ZH, Tan CK, Tan NS, Wahli W, Sharma M, Kambadur R (2011) Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts. Cell Res 21:1591–1604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Hosoyama T, Nishijo K, Prajapati SI, Li G, Keller C (2011) Rb1 gene inactivation expands satellite cell and postnatal myoblast pools. J Biol Chem 286:19556–19564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Juan AH, Derfoul A, Feng X, Ryall JG, Dell'Orso S, Pasut A, Zare H, Simone JM, Rudnicki MA, Sartorelli V (2011) Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. Genes Dev 25:789–794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kitamoto T, Hanaoka K (2010) Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 28:2205–2216

    Article  CAS  PubMed  Google Scholar 

  64. Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482:524–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–547

    Article  PubMed Central  PubMed  Google Scholar 

  67. Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA (2013) Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12:75–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Oishi T, Uezumi A, Kanaji A, Yamamoto N, Yamaguchi A, Yamada H, Tsuchida K (2013) Osteogenic differentiation capacity of human skeletal muscle-derived progenitor cells. PLoS One 8, e56641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Alexakis C, Partridge T, Bou-Gharios G (2007) Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol 293:C661–C669

    Article  CAS  PubMed  Google Scholar 

  70. Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M, Morita M, Yamaguchi A, Yamada H, Nishino I, Hamada Y et al (2014) Identification and characterization of PDGFRalpha(+) mesenchymal progenitors in human skeletal muscle. Cell Death Dis 5, e1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  72. Hudlicka O, Brown MD, Egginton S (2004) Microcirculation in muscle. In: Engel AG, Franzini-Armstrong C (eds) Myology. McGraw-Hill, New York, pp 511–533

    Google Scholar 

  73. Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038

    CAS  PubMed  Google Scholar 

  74. Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    Article  CAS  PubMed  Google Scholar 

  75. Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K, Nakamura Y (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25:1610–1617

    Article  CAS  PubMed  Google Scholar 

  76. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–228

    Article  CAS  PubMed  Google Scholar 

  78. Fukada S, Morikawa D, Yamamoto Y, Yoshida T, Sumie N, Yamaguchi M, Ito T, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K et al (2010) Genetic background affects properties of satellite cells and mdx phenotypes. Am J Pathol 176:2414–2424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Heydemann A, Huber JM, Demonbreun A, Hadhazy M, McNally EM (2005) Genetic background influences muscular dystrophy. Neuromuscul Disord 15:601–609

    Article  PubMed  Google Scholar 

  80. Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, Beier DR, Palmer AA, McNally EM (2009) Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest 119:3703–3712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Urban Z, Hucthagowder V, Schurmann N, Todorovic V, Zilberberg L, Choi J, Sens C, Brown CW, Clark RD, Holland KE et al (2009) Mutations in LTBP4 cause a syndrome of impaired pulmonary, gastrointestinal, genitourinary, musculoskeletal, and dermal development. Am J Hum Genet 85:593–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  83. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  CAS  PubMed  Google Scholar 

  84. Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327

    Article  CAS  PubMed  Google Scholar 

  85. Gnocchi VF, Ellis JA, Zammit PS (2008) Does satellite cell dysfunction contribute to disease progression in Emery-Dreifuss muscular dystrophy? Biochem Soc Trans 36:1344–1349

    Article  CAS  PubMed  Google Scholar 

  86. Fukada S, Yamamoto Y, Segawa M, Sakamoto K, Nakajima M, Sato M, Morikawa D, Uezumi A, Miyagoe-Suzuki Y, Takeda S et al (2008) CD90-positive cells, an additional cell population, produce laminin alpha2 upon transplantation to dy(3k)/dy(3k) mice. Exp Cell Res 314:193–203

    Article  CAS  PubMed  Google Scholar 

  87. Wosczyna MN, Biswas AA, Cogswell CA, Goldhamer DJ (2012) Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27:1004–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Olson LE, Soriano P (2009) Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. Dev Cell 16:303–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Bizario JC, Cerri DG, Rodrigues LC, Oliveira GL, Nomizo A, de Araujo DD, Fukuhara PS, Ribeiro JC, de Castro FA, Costa MC (2009) Imatinib mesylate ameliorates the dystrophic phenotype in exercised mdx mice. J Neuroimmunol 212:93–101

    Article  CAS  PubMed  Google Scholar 

  90. Huang P, Zhao XS, Fields M, Ransohoff RM, Zhou L (2009) Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB J 23:2539–2548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Ito T, Ogawa R, Uezumi A, Ohtani T, Watanabe Y, Tsujikawa K, Miyagoe-Suzuki Y, Takeda S, Yamamoto H, Fukada S (2013) Imatinib attenuates severe mouse dystrophy and inhibits proliferation and fibrosis-marker expression in muscle mesenchymal progenitors. Neuromuscul Disord 23:349–356

    Article  PubMed  Google Scholar 

  92. Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT, Gamradt M, ap Rhys CM, Holm TM, Loeys BL et al (2007) Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 13:204–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Iezzi S, Di Padova M, Serra C, Caretti G, Simone C, Maklan E, Minetti G, Zhao P, Hoffman EP, Puri PL et al (2004) Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev Cell 6:673–684

    Article  CAS  PubMed  Google Scholar 

  94. Minetti GC, Colussi C, Adami R, Serra C, Mozzetta C, Parente V, Fortuni S, Straino S, Sampaolesi M, Di Padova M et al (2006) Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat Med 12:1147–1150

    Article  CAS  PubMed  Google Scholar 

  95. Mozzetta C, Consalvi S, Saccone V, Tierney M, Diamantini A, Mitchell KJ, Marazzi G, Borsellino G, Battistini L, Sassoon D et al (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 5:626–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Motohashi N, Uezumi A, Yada E, Fukada S, Fukushima K, Imaizumi K, Miyagoe-Suzuki Y, Takeda S (2008) Muscle CD31(-) CD45(-) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am J Pathol 173:781–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. White RB, Bierinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10:21

    Article  PubMed Central  PubMed  Google Scholar 

  98. Fukada S, Ma Y, Uezumi A (2014) Adult stem cell and mesenchymal progenitor theories of aging. Front Cell Dev Biol 2:10

    Google Scholar 

  99. Acharyya S, Butchbach ME, Sahenk Z, Wang H, Saji M, Carathers M, Ringel MD, Skipworth RJ, Fearon KC, Hollingsworth MA et al (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8:421–432

    Article  CAS  PubMed  Google Scholar 

  100. Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P (2010) Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One 5, e13604

    Article  PubMed Central  PubMed  Google Scholar 

  101. He WA, Berardi E, Cardillo VM, Acharyya S, Aulino P, Thomas-Ahner J, Wang J, Bloomston M, Muscarella P, Nau P et al (2013) NF-kappaB-mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia. J Clin Invest 123:4821–4835

    Google Scholar 

Download references

Acknowledgment

We thank Katherine Ono for comments on the manuscript. S. F. was supported by JSPS KAKENHI grant, Grants-in-Aid for Young Scientists (A) (25702044), Intramural Research Grant (22-5 and 25-5) for Neurological and Psychiatric Disorders of NCNP. A.U. was supported by JSPS KAKENHI grant (24659687), Kato Memorial Bioscience Foundation, ONO Medical Research Foundation, and The Nakatomi Foundation. The authors indicate no potential conflicts of interest. Both S. F. and A.U. belong to “The Research Center Network for Realization of Regenerative Medicine” of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So-ichiro Fukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Uezumi, A., Fukada, Si. (2016). Toward Regenerative Medicine for Muscular Dystrophies. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics