Skip to main content

Molecular Pathogenesis and Therapeutic Strategy in GNE Myopathy

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy

Abstract

GNE myopathy is an autosomal recessive disease, which is characterized by gradually progressive muscle atrophy and weakness, and preferentially involves the distal muscles of lower extremities, especially the tibialis anterior muscle. GNE myopathy is caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene which encodes the bifunctional enzyme catalyzing the rate-limiting step in sialic acid biosynthesis. GNE myopathy model mouse, in which Gne is knocked out with human GNE transgene with D176V, recaptured the symptoms of human GNE myopathy. The supplementation of ManNAc, NeuAc, and sialyllactose prevented the onset of the disorder and also recovered the muscle function from symptomatic status, suggesting hyposialylation is one of key factors in the pathogenesis of this disorder. Based on the studies with GNE myopathy model, the clinical trials are conducted at the three places in the world (USA, Japan, and Israel). Expectedly GNE myopathy will be treatable in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nonaka I, Sunohara N, Ishiura S et al (1981) Familial distal myopathy with rimmed vacuole and lamellar (myeloid) body formation. J Neurol Sci 51:141–155

    Article  CAS  PubMed  Google Scholar 

  2. Argov Z, Yarom R (1984) “Rimmed vacuole myopathy” sparing the quadriceps. A unique disorder in Iranian Jews. J Neurol Sci 64:33–43

    Article  CAS  PubMed  Google Scholar 

  3. Eisenberg I, Avidan N, Potikha T et al (2001) The UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene is mutated in recessive hereditary inclusion body myopathy. Nat Genet 29:83–87

    Article  CAS  PubMed  Google Scholar 

  4. Cho A, Hayashi YK, Monma K (2013) Mutation profile of the GNE gene in Japanese patients with distal myopathy with rimmed vacuoles (GNE myopathy). J Neurol Neurosurg Psychiatry. doi:10.1136/jnnp-2013-305587

    Google Scholar 

  5. Celeste FV, Vilboux T, Ciccone C et al (2014) Mutation update for GNE gene variants associated with GNE myopathy. Hum Mutat 35:915–926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Noguchi S, Keira Y, Murayama K et al (2004) Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem 279:11402–11407

    Article  CAS  PubMed  Google Scholar 

  7. Nishino I, Noguchi S, Murayama K (2002) Distal myopathy with rimmed vacuoles is allelic to hereditary inclusion body myopathy. Neurology 59:1689–1693

    Article  CAS  PubMed  Google Scholar 

  8. Huizing M, Carrillo-Carrasco N, Malicdan MC et al (2014) GNE myopathy: new name and new mutation nomenclature. Neuromuscul Disord 24:387–389

    Article  PubMed Central  PubMed  Google Scholar 

  9. Mori-Yoshimura M, Oya Y, Yajima H (2014) GNE myopathy: a prospective natural history study of disease progression. Neuromuscul Disord 24:380–386

    Article  PubMed  Google Scholar 

  10. Mori-Yoshimura M, Oya Y, Hayashi YK (2013) Respiratory dysfunction in patients severely affected by GNE myopathy (distal myopathy with rimmed vacuoles). Neuromuscul Disord 23:84–88

    Article  PubMed  Google Scholar 

  11. Malicdan MC, Noguchi S, Nishino I (2007) Autophagy in a mouse model of distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Autophagy 3:396–398

    Article  CAS  PubMed  Google Scholar 

  12. Shea L, Raben N (2009) Autophagy in skeletal muscle: implications for Pompe disease. Int J Clin Pharmacol Ther 47(Suppl 1):S42–S47

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Malicdan MC, Noguchi S, Nonaka I et al (2008) Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord 18:521–529

    Article  PubMed  Google Scholar 

  14. Mori-Yoshimura M, Monma K, Suzuki N et al (2012) Heterozygous UDP-GlcNAc 2-epimerase and N-acetylmannosamine kinase domain mutations in the GNE gene result in a less severe GNE myopathy phenotype compared to homozygous N-acetylmannosamine kinase domain mutations. J Neurol Sci 318:100–105

    Article  CAS  PubMed  Google Scholar 

  15. Malicdan MC, Noguchi S, Nishino I (2010) A preclinical trial of sialic acid metabolites on distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy, a sugar-deficient myopathy: a review. Ther Adv Neurol Disord 3:127–135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Salama I, Hinderlich S, Shlomai Z et al (2005) No overall hyposialylation in hereditary inclusion body myopathy myoblasts carrying the homozygous M712T GNE mutation. Biochem Biophys Res Commun 328:221–226

    Article  CAS  PubMed  Google Scholar 

  17. Hinderlich S, Salama I, Eisenberg I (2004) The homozygous M712T mutation of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase results in reduced enzyme activities but not in altered overall cellular sialylation in hereditary inclusion body myopathy. FEBS Lett 566:105–109

    Article  CAS  PubMed  Google Scholar 

  18. Kakani S, Yardeni T, Poling J et al (2012) The Gne M712T mouse as a model for human glomerulopathy. Am J Pathol 180:1431–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ito M, Sugihara K, Asaka T (2012) Glycoprotein hyposialylation gives rise to a nephrotic-like syndrome that is prevented by sialic acid administration in GNE V572L point-mutant mice. PLoS One 7:e29873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Daya A, Vatine GD, Becker-Cohen M et al (2014) Gne depletion during zebrafish development impairs skeletal muscle structure and function. Hum Mol Genet 23:3349–3361

    Article  CAS  PubMed  Google Scholar 

  21. Malicdan MC, Noguchi S, Nonaka I et al (2007) A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 16:2669–2682

    Article  CAS  PubMed  Google Scholar 

  22. Malicdan MC, Noguchi S, Hayashi YK (2008) Muscle weakness correlates with muscle atrophy and precedes the development of inclusion body or rimmed vacuoles in the mouse model of DMRV/hIBM. Physiol Genomics 35:106–115

    Article  CAS  PubMed  Google Scholar 

  23. North KN, Laing NG, Wallgren-Pettersson C (1997) Nemaline myopathy: current concepts. The ENMC International Consortium and Nemaline Myopathy. J Med Genet 34:705–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. D’Antona G, Brocca L, Pansarasa O et al (2007) Structural and functional alterations of muscle fibres in the novel mouse model of facioscapulohumeral muscular dystrophy. J Physiol 584:997–1009

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yeung EW, Head SI, Allen DG (2003) Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres. J Physiol 552:449–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sugarman MC, Kitazawa M, Baker M (2006) Pathogenic accumulation of APP in fast twitch muscle of IBM patients and a transgenic model. Neurobiol Aging 27:423–432

    Article  CAS  PubMed  Google Scholar 

  27. Schwarzkopf M, Knobeloch KP, Rohde E et al (2002) Sialylation is essential for early development in mice. Proc Natl Acad Sci U S A 99:5267–5270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Malicdan MC, Noguchi S, Hayashi YK et al (2009) Prophylactic treatment with sialic acid metabolites precludes the development of the myopathic phenotype in the DMRV-hIBM mouse model. Nat Med 15:690–695

    Article  CAS  PubMed  Google Scholar 

  29. Malicdan MC, Noguchi S, Tokutomi T (2012) Peracetylated N-acetylmannosamine, a synthetic sugar molecule, efficiently rescues muscle phenotype and biochemical defects in mouse model of sialic acid-deficient myopathy. J Biol Chem 287:2689–2705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yonekawa T, Malicdan MC, Cho A et al (2014) Sialyllactose ameliorates myopathic phenotypes in symptomatic GNE myopathy model mice. Brain 137:2670–2679

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nishino I, Carrillo-Carrasco N, Argov Z (2014) GNE myopathy: current update and future therapy. J Neurol Neurosurg Psychiatry 86:385–392

    Article  PubMed Central  PubMed  Google Scholar 

  32. Sparks S, Rakocevic G, Joe G (2007) Intravenous immune globulin in hereditary inclusion body myopathy: a pilot study. BMC Neurol 29(7):3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Noguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nishimura, H., Noguchi, S. (2016). Molecular Pathogenesis and Therapeutic Strategy in GNE Myopathy. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics