Skip to main content

A Universal Mechanism of Determining the Robustness of Evolving Systems

  • Chapter
  • First Online:
Mathematical Approaches to Biological Systems

Abstract

A universal feature of open complex systems such as reaction networks in living organisms, ecosystems, and social communities is that their complexity emerges, or at least persists, under successive introductions of new elements. To have a general and simple understanding for the basic condition to let such systems grow, we investigate a simple mathematical process. It is found that the model system either grows infinitely large or stays finite depending upon the model’s unique parameter m, the average number of interactions per element. Comparing to the classical diversity-stability relation based on a linear-stability analysis, the condition for our system to grow is more moderate. The mechanism of this novel universal transition is described in detail. The characteristics of the model, such as lifetime distribution of the elements, and its relevance to the previous works such as SOC models are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    m∕2 is an average number of incoming links; therefore, the actual variance of the species with m links is slightly broader.

  2. 2.

    Here we use the relation \(G(\sigma,x) = \left (\frac{\sigma ^{{\prime}}} {\sigma }\right )G\left (\sigma ^{{\prime}}, \frac{\sigma ^{{\prime}}} {\sigma } x\right )\) and \(\quad \int _{0}^{\infty }G(\sigma,\xi )\Phi (\xi )d\xi = \frac{1} {4} + \frac{\arctan (\sigma )} {2\pi }.\)

  3. 3.

    \(\sqrt{\frac{1 +\sigma _{ m=10 }^{2 }} {\sigma _{m=10}^{2}}} = 1.0198,\quad \sqrt{\frac{1 +\sigma _{ m=20 }^{2 }} {\sigma _{m=20}^{2}}} = 1.005\)

  4. 4.

    For the following calculation, we reuse the formulas in 1.3.4.1.

References

  1. Shimada T (2014) A universal transition in the robustness of evolving open systems. Sci Rep 4:4082

    PubMed Central  PubMed  Google Scholar 

  2. Gardner MR, Ashby WR (1970) Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228:784–784

    Article  CAS  PubMed  Google Scholar 

  3. May RM (1972) Will a large complex system be stable? Nature 238:413–414

    Article  CAS  PubMed  Google Scholar 

  4. McCann KS (2000) The diversity-stability debate. Nature 405:228–233

    Article  CAS  PubMed  Google Scholar 

  5. Roberts A (1974) The stability of a feasible random ecosystem. Nature 251:607–608

    Article  Google Scholar 

  6. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    Article  CAS  PubMed  Google Scholar 

  7. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351

    Article  CAS  PubMed  Google Scholar 

  8. Taylor PJ (1988) Consistent scaling and parameter choice for linear and generalized Lotka-Volterra models used in community ecology. J Theor Biol 135:543–568

    Article  Google Scholar 

  9. Taylor PJ (1988) The construction and turnover of complex community models having generalized Lotka-Volterra dynamics. J Theor Biol 135:569–588

    Article  Google Scholar 

  10. Tokita K, Yasutomi A (1999) Mass extinction in a dynamical system of evolution with variable dimension. Phys Rev E 60:842–847

    Article  CAS  Google Scholar 

  11. Shimada T, Yukawa S, Ito N (2002) Self-organization in an ecosystem. Artif Life Robot 6:78–81

    Article  Google Scholar 

  12. Shimada T, Murase Y, Ito N, Aihara K (2007) A simple model of evolving ecosystems. Artif Life Robot 11:153–156

    Article  Google Scholar 

  13. Perotti JI, Billoni OV, Tamarit FA, Dante R, Chialvo DR, Cannas SA (2009) Emergent self-organized complex network topology out of stability constraints. Phys Rev Lett 103:108701

    Article  PubMed  Google Scholar 

  14. Benincà E, Huisman J, Heerkloss R, Jöhnk KD, Branco P, Van Nes EH, Scheffer M, Ellner SP (2008) Chaos in a long-term experiment with a plankton community. Nature 451:822–825

    Article  PubMed  Google Scholar 

  15. Pimm SL (1979) Complexity and stability: another look at MacArthur’s original hypothesis. OIKOS 33:351–357

    Article  Google Scholar 

  16. Pimm SL (1980) Food web design and the effect of species deletion. OIKOS 35:139–149

    Article  Google Scholar 

  17. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–82

    Article  CAS  PubMed  Google Scholar 

  18. Moreira AA, Andrade JS, Herrmann HJ, Joseph OI (2009) How to make a fragile network robust and vice versa. Phys Rev Lett 102:018701

    Article  PubMed  Google Scholar 

  19. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464:1025–1028

    Article  CAS  PubMed  Google Scholar 

  20. Herrmann HJ, Schneider CM, Moreira AA, Andrade JS, Havlin S (2011) Onion-like network topology enhances robustness against malicious attacks. J Stat Mech 2011:P01027

    Article  Google Scholar 

  21. Albert R, Barabási A-L (2001) Statistical mechanics of complex networks. arXiv:cond-mat/0106096 v1

    Google Scholar 

  22. Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 71:4083–4086

    Article  CAS  PubMed  Google Scholar 

  23. Solé RV, Bascompte J (1996) Are critical phenomena relevant to large-scale evolution? Proc R Soc Lond B 263:161–168

    Article  Google Scholar 

  24. Murase Y, Shimada T, Ito N (2010) A simple model for skewed species-lifetime distributions. New J Phys 12:063021

    Article  Google Scholar 

  25. Shimada T, Yukawa S, Ito N (2003) Life-span of families in fossil data forms q-exponential distribution. Int J Mod Phys C 14:1267–1271

    Article  Google Scholar 

  26. Murase Y, Shimada T, Ito N, Rikvold PA (2010) Random walk in genome space: a key ingredient of intermittent dynamics of community assembly on evolutionary time scales. J Theor Biol 264:663–672

    Article  PubMed  Google Scholar 

  27. Mizuno T, Takayasu M (2009) The statistical relationship between product life cycle and repeat purchase behavior in convenience stores. Prog Theor Phys Suppl 179:71–79

    Article  Google Scholar 

  28. Murase Y, Uchitane T (2014) Ito: a tool for parameter-space explorations. N. In: Proceedings of 27th CSP workshop. Phys Proc 57:73–76

    Google Scholar 

Download references

Acknowledgments

The author thanks H. Ando, C.-K. Hu, H. Kori, Y. Murase, T. Ohira, Y. Sano, S. Shimada, and C.-P. Zhu for discussion and comments. This work was supported by the JSPS Grant-in-Aid for Young Scientists (B) no. 21740284 MEXT, Japan. The systematic simulations in this study were assisted by OACIS [28].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shimada, T. (2015). A Universal Mechanism of Determining the Robustness of Evolving Systems. In: Ohira, T., Uzawa, T. (eds) Mathematical Approaches to Biological Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55444-8_5

Download citation

Publish with us

Policies and ethics