Skip to main content

Computing Optimal Cycles of Homology Groups

  • Chapter
  • First Online:
A Mathematical Approach to Research Problems of Science and Technology

Part of the book series: Mathematics for Industry ((MFI,volume 5))

Abstract

This is a brief survey concerning the problem of computing optimal cycles of homology groups through linear optimization. While homology groups encode information about the presence of topological features such as holes and voids of some geometrical structure, optimal cycles tighten the representatives of the homology classes. This allows us to infer additional information concerning the location of those topological features. Moreover, by a slight modification of the original problem, we extend it to the case where we have multiple nonhomologous cycles. By considering a more general class of combinatorial structures called complexes, we recast this multiple nonhomologous cycles problem as a single cycle optimization problem in a modified complex. Finally, as a numerical example, we apply the optimal cycles problem to the 3D structure of human deoxyhemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  2. Cgal, Computational geometry algorithms library. http://www.cgal.org

  3. C. Chen, D. Freedman, Quantifying homology classes, in Symposium on Theoretical Aspects of Computer, Science, 169–180 (2008)

    Google Scholar 

  4. C. Chen, D. Freedman, Measuring and computing natural generators for homology groups. Comput. Geom. 43(2), 169–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. CHomP homology software. http://chomp.rutgers.edu/

  6. T.K. Dey, A.N. Hirani, B. Krishnamoorthy, Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40(4), 1026–1044 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Edelsbrunner, Weighted alpha shapes. Technical report, Department of Computer Science, University of Illinois at Urbana-Champaign, 1992

    Google Scholar 

  8. G. Fermi, M.F. Perutz, B. Shaanan, R. Fourme, The crystal structure of human deoxyhaemoglobin at 1.74 a resolution. J. Mol. Biol. 175(2), 159–174 (1984)

    Article  Google Scholar 

  9. M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow, V. Nanda, Topological Measurement of Protein Compressibility via Persistence Diagrams, MI Preprint Series, 6 (2012)

    Google Scholar 

  10. International Business Machines Corp, IBM ILOG CPLEX optimization studio. http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/

  11. T. Kaczynski, K. Mischaikow, M. Mrozek, Computational Homology (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  12. J. Munkres, Elements of Algebraic Topology (The Benjamin/Cummings Publishing Company Inc, Menlo Park, 1984)

    MATH  Google Scholar 

  13. A. Schrijver, in Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimzation (Wiley, New York, 2000)

    Google Scholar 

  14. A.F. Veinott Jr, G.B. Dantzig, Integral extreme points. SIAM Rev. 10(3), 371–372 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Zomorodian, G. Carlsson, Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2004)

    Article  MathSciNet  Google Scholar 

  16. A. Zomorodian, G. Carlsson, Localized Homology. Comput. Geom. 41(3), 126–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hayato Waki for valuable comments and discussions and for introducing optimization software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Hiraoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Escolar, E.G., Hiraoka, Y. (2014). Computing Optimal Cycles of Homology Groups. In: Nishii, R., et al. A Mathematical Approach to Research Problems of Science and Technology. Mathematics for Industry, vol 5. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55060-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55060-0_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55059-4

  • Online ISBN: 978-4-431-55060-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics