Skip to main content

Discrete Isoperimetric Deformation of Discrete Curves

  • Chapter
  • First Online:

Part of the book series: Mathematics for Industry ((MFI,volume 4))

Abstract

We consider isoperimetric deformations of discrete plane/space curves. We first give a brief review of the theory of isoperimetric deformation of smooth curves, which naturally gives rise to the modified KdV (mKdV) equation as a deformation equation of the curvature. We then present its discrete model described by the discrete mKdV equation, which is formulated as the isoperimetric equidistant deformation of discrete curves. We next give a review of isoperimetric and torsion-preserving deformation of smooth space curves with constant torsion which is described by the mKdV equation. We formulate a discrete analogue of it as the isoperimetric, torsion-preserving and equidistant deformation on the osculating planes of space discrete curves. The deformation admits two discrete flows, namely by the discrete mKdV equation and by the discrete sine-Gordon equation. We also show that one can make an arbitrary choice of two flows at each step, which is controlled by tuning the deformation parameters appropriately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bobenko A, Pinkall U (1996) Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J Diff Geom 43:527–611

    MATH  MathSciNet  Google Scholar 

  2. Doliwa A, Santini PM (1994) An elementary geometric characterization of the integrable motions of a curve. Phys Lett A 185:373–384

    Article  MATH  MathSciNet  Google Scholar 

  3. Doliwa A, Santini PM (1995) Integrable dynamics of a discrete curve and the Ablowitz-Ladik hierarchy. J Math Phys 36:1259–1273

    Article  MATH  MathSciNet  Google Scholar 

  4. Doliwa A, Santini PM (1996) The integrable dynamics of a discrete curve. In: Levi D, Vinet L, Winternitz P (eds) Symmetries and integrability of difference equations. CRM proceedings and lecture notes, vol 9. American Mathematical Society, Providence, RI, pp 91–102

    Google Scholar 

  5. Eyring H (1932) The resultant electric moment of complex molecules. Phys Rev 39:746–748

    Article  Google Scholar 

  6. Goldstein RE, Petrich DM (1991) The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane. Phys Rev Lett 67:3203–3206

    Article  MATH  MathSciNet  Google Scholar 

  7. Hasimoto H (1972) A soliton on a vortex filament. J Fluid Mech 51:477–485

    Article  MATH  Google Scholar 

  8. Hirota R (1977) Nonlinear partial difference equations III; discrete sine-Gordon equation. J Phys Soc Jpn 43:2079–2086

    Article  MathSciNet  Google Scholar 

  9. Hirota R (1998) Discretization of the potential modified KdV equation. J Phys Soc Jpn 67:2234–2236

    Article  MATH  MathSciNet  Google Scholar 

  10. Hisakado M, Nakayama K, Wadati M (1995) Motion of discrete curves in the plane. J Phys Soc Jpn 64:2390–2393

    Article  MATH  MathSciNet  Google Scholar 

  11. Hisakado M, Wadati M (1996) Moving discrete curve and geometric phase. Phys Lett A 214:252–258

    Article  MATH  MathSciNet  Google Scholar 

  12. Hoffmann T (2008) Discrete Hashimoto surfaces and a doubly discrete smoke-ring flow. In: Bobenko AI, Schröder P, Sullivan JM, Ziegler GM (eds) Discrete differential geometry. Oberwolfach seminars, vol 38. Birkhäuser, Basel, pp 95–115

    Google Scholar 

  13. Hoffmann T (2009) Discrete differential geometry of curves and surfaces. COE lecture notes, vol 18. Kyushu University, Fukuoka

    Google Scholar 

  14. Hoffmann T, Kutz N (2004) Discrete curves in \(\mathbb{C}P^1\) and the Toda lattice. Stud Appl Math 113:31–55

    Article  MATH  MathSciNet  Google Scholar 

  15. Inoguchi J, Kajiwara K, Matsuura N, Ohta Y (2012) Motion and Bäcklund transformations of discrete plane curves. Kyushu J Math 66:303–324

    Article  MATH  MathSciNet  Google Scholar 

  16. Inoguchi J, Kajiwara K, Matsuura N, Ohta Y (2012) Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves. J Phys A: Math Theor 45:045206

    Article  MathSciNet  Google Scholar 

  17. Inoguchi J, Kajiwara K, Matsuura N, Ohta Y (preprint) Discrete mKdV and discrete sine-Gordon flows on discrete space curves. arXiv:1311.4245

  18. Lamb G Jr (1976) Solitons and the motion of helical curves. Phys Rev Lett 37:235–237

    Article  MathSciNet  Google Scholar 

  19. Langer J, Perline R (1998) Curve motion inducing modified Korteweg-de Vries systems. Phys Lett A 239:36–40

    Article  MATH  MathSciNet  Google Scholar 

  20. Matsuura N (2012) Discrete KdV and discrete modified KdV equations arising from motions of planar discrete curves. Int Math Res Not 2012:1681–1698

    MATH  MathSciNet  Google Scholar 

  21. Nakayama K (2007) Elementary vortex filament model of the discrete nonlinear Schrödinger equation. J Phys Soc Jpn 76:074003

    Article  Google Scholar 

  22. Nakayama K, Segur H, Wadati M (1992) Integrability and the motions of curves. Phys Rev Lett 69:2603–2606

    Article  MATH  MathSciNet  Google Scholar 

  23. Nishinari K (1999) A discrete model of an extensible string in three-dimensional space. J Appl Mech 66:695–701

    Article  Google Scholar 

  24. Pinkall U, Springborn B, Weißmann S (2007) A new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. J Phys A: Math Theor 40:12563–12576

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kajiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Inoguchi, J.i., Kajiwara, K., Matsuura, N., Ohta, Y. (2014). Discrete Isoperimetric Deformation of Discrete Curves. In: Anjyo, K. (eds) Mathematical Progress in Expressive Image Synthesis I. Mathematics for Industry, vol 4. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55007-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55007-5_15

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55006-8

  • Online ISBN: 978-4-431-55007-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics