Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 31))

  • 297 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AES20–1996, Recommended Practice for Professional Audio - Subjective Evaluation of Loudspeakers,J. Audio Eng. Soc., Vol. 44, No. 5, pp. 386–401, 1996.

    Google Scholar 

  2. AMERICAN NEURALOGIX Inc., NIX 230 Fuzzy Microcontroller Application Note, Sanford, U.S.A., 1992.

    Google Scholar 

  3. AMERICAN NEURALOGIX Inc., FMC Development System - Technical Note, Sanford, U.S.A., 1992.

    Google Scholar 

  4. ANDO Y., Calculation of Subjective Preference at Each Seat in the Concert Hall,J. Acoust. Soc. Amer., Vol. 74, No. 3, pp. 873–887,1983.

    Google Scholar 

  5. ANDO Y., GOTTLOB D., Effects of Early Multiple Reflections on Subjective Preference Judgments of Music Sound Fields, J. Acoust. Soc. Amer., Vol. 65, No. 2, pp. 524–527, 1979.

    Article  ADS  Google Scholar 

  6. ANDO S., YAMAGUCHI K., Statistical Study of Spectral Parameters in Musical Instrument Tones, J. Acoust. Soc. of America, Vol. 94, No. 1, pp. 37–45, 1993.

    Article  ADS  Google Scholar 

  7. ANDO Y., SATO S., NAKAJIMA T., SAKURAI M., Acoustic Design of a Concert Hall Applying the Theory of Subjective Preference and the Acoustic Measurement after Construction, Acta Acustica, Vol. 83, pp. 635–643, 1997.

    Google Scholar 

  8. BANK M., TAICHER A., KARABELNIK Y., An Objective Method for Sound Quality Estimation of Compression Systems, 101st Audio Eng. Soc. Cony., Preprint No. 4373, Los Angeles, 1996.

    Google Scholar 

  9. BAO Z., A Tentative Study of the Fuzzy Feature of the Sound Quality Perception,84th Audio Eng. Soc. Cony., Preprint No. 2640, Paris, 1988.

    Google Scholar 

  10. BARRON M, MARSHALL A.H., Spatial Impression Due to Early Lateral Reflections in Concert Halls: the Derivation of Physical Nature, J. Sound Vib., Vol. 77, pp. 211–232, 1981.

    Article  ADS  Google Scholar 

  11. BARRON M., LEE L-J., Energy Relations in Concert Auditoriums. I, J. Acoust. Soc. Amer., Vol. 84, No. 2, pp. 618–628, 1988.

    Article  ADS  Google Scholar 

  12. BAZAN J.G., SKOWRON A., SYNAK P., Discovery of Decision Rules from Experimental Data, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 276–279, 1994.

    Google Scholar 

  13. BEATON R.J., WONG P., A Disk-based System for the Subjective Assessment of High Quality Audio, 94th Audio Eng Soc. Cony., Preprint No. 3497, Berlin, 1993.

    Google Scholar 

  14. BEAUCHAMP J.W., Unix Workstation Software for Analysis, Graphics, Modification, and Synthesis of Musical Sounds,94th Audio Eng. Soc. Cony., Preprint No. 3479, Berlin, 1933.

    Google Scholar 

  15. BEERENDS J.G., STEMERDINK J.A., Measuring the Quality of Audio Devices, 90th Audio Eng. Soc. Cony., Preprint No. 3070, Paris, 1991.

    Google Scholar 

  16. BEERENDS J.G., STEMERDINK J.A., A Perceptual Audio Quality Measure Based on a Psychoacoustic Sound Representation, J. Audio Eng. Society, Vol. 40, No. 12, pp. 963–978, 1992.

    Google Scholar 

  17. BEERENDS J.G., STEMERDINK J.A., A Perceptual Speech-Quality Measure Based on a Psychoacoustic Sound Representation, J. Audio Eng. Soc., Vol. 42, pp. 115–123, 1994.

    Google Scholar 

  18. BENADE A.H., On the Propagation of Sound Waves in a Cylindrical Conduit,J. Acoust. Soc. Amer, Vol. 44, No. 2, pp. 616–623,1968.

    Google Scholar 

  19. BERANEK L.L., Music, Acoustics and Architecture, J. Wiley and Sons, New York, 1962.

    Google Scholar 

  20. BERANEK L.L., Concert Hall Acoustics,J. Acoust. Soc. Amer, Vol. 92, No. 1, pp. 1–40,1992.

    Google Scholar 

  21. BEYER R.T., Acoustic, Acoustics, J. Acoust Soc. Amer., Vol. 98, No. 1, pp. 33–34, 1995.

    Article  ADS  Google Scholar 

  22. BEZDEK J.C, HATHAWAY R.J., SABIN M.J., TUCKER W.T., Convergence Theory for Fuzzy c-Means Counterexamples and Repairs, IEEE Trans. Syst., Man, Cybem., Vol. SMC-17, No. 5, 1987.

    Google Scholar 

  23. BILLINGS S.A., CHEN S., Extended Model Set, Global Data and Threshold Model Identification of Severely Non-Linear Systems, hit J. Control, Vol. 50, No. 5, pp. 1897–1923, 1989.

    Article  MATH  Google Scholar 

  24. BLAUERT J., LINDEMANN W., Auditory Spaciousness: Some Further Psychoacoustic Studies, J. Acoust. Soc. Amer., Vol. 80, No. 5, pp. 553–542, 1986.

    ADS  Google Scholar 

  25. BLAUERT J., JEKOSCH U., Sound Quality Evaluation–a Multi-Layered Problem, Acustica, Vol. 83, No. 5, pp. 747–753, 1997.

    Google Scholar 

  26. BODDEN M., Instrumentation for Sound Quality Evaluation,Acustica, Vol. 83, No. 5, pp. 775–783,1997.

    Google Scholar 

  27. BOSC P., KACPRZYK J. (Eds.), Fuzziness in Database Management Systems, Physica-Verlag (Springer-Verlag), Heidelberg 1995.

    MATH  Google Scholar 

  28. BOSE B. K., Expert System, Fuzzy Logic, and Neural Network Applications in Power Electronics and Motion Control, IEEE, Vol. 82, No. 8, pp. 1303–1323, 1994.

    Article  Google Scholar 

  29. BRADLEY J.S., Experience with New Auditorium Acoustic Measurements,J. Acoust. Soc. Amer., Vol. 73, No. 6, pp. 2051–2058,1993.

    Google Scholar 

  30. BROWN J.C., Musical Fundamental Frequency Tracking Using a Pattern Recognition Method,J. Acoust. Soc. Amer, Vol. 92, No. 3, pp. 1394–1402,1992.

    Google Scholar 

  31. CADDY S., POLLARD H.F., Transient Sounds in Organ Pipes, Acustica, No. 7, pp. 227–280, 1957.

    Google Scholar 

  32. CAMBRIGE P., TODD M., Audio Data Compression Techniques, 94th AES Convention, Preprint No. 3584, Berlin, 1993.

    Google Scholar 

  33. CARLSEN J.C., FRICKE J.J., Comparability of Two Measures of Musical Prototypes, Technical Report Series No. 8803, Univ. of Washington, Seattle, 1988.

    Google Scholar 

  34. CHAFE C., JAFFE D., Source Separation and Note Identification in Polyphonic Music, Proc. IEEE-IECETASJ (Intern. Conf. on Acoustics, Speech, and Signal Proc., pp. 1289–1292, Tokyo, 1986.

    Google Scholar 

  35. CHMIELEWSKI M.R., GRZYMALA-BUSSE J.W., et. al., The Rule Induction System LERS–a Version for Personal Computers, Foundations of Computing and Decision Sciences, Vol. 18, No. 3–4, pp. 181–212, Poznan, 1993.

    MATH  Google Scholar 

  36. CHMIELEWSKI M.R., GRZYMALA-BUSSE J.W., Global Discretization of Continuous Attributes as Preprocessing for Machine Learning, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 294–301, 1994.

    Google Scholar 

  37. CHOI H., WILLIAMS W., Improved Time Frequency Representation of Multi-Component Signals using Exponential Kernels, IEEE Trans. ASSP, Vol. 37, pp. 862–871, 1989.

    Article  ADS  Google Scholar 

  38. CHRISTENSEN N.S., CHRISTENSEN K.E., WORM H., Classification of Music Using Neural Net, 92nd Audio Eng. Soc. Cony., Preprint No. 32–96, Vienna, 1992.

    Google Scholar 

  39. CHUI CH. K., MONTEFUSCO L., PUCCO L. (Eds.), Wavelets - Theory, Algorithms and Applications, Academic Press, Inc., San Diego, U.S.A., 1994.

    Google Scholar 

  40. COLOMES C., LEVER M., RAULT J.B., DEHERY Y.F., A Perceptual Model Applied to Audio Bit-rate Reduction, J. Audio Eng. Soc., Vol. 43, No. 5, pp. 233–240, 1995.

    Google Scholar 

  41. COLOMES C., LEVER M., RAULT J.B., DEHERY Y.F., FAUCON G., A Perceptual Objective Measurement System (POM) for the Quality Assessment of Perceptual Codecs, 96th AES Convention, Preprint No. 3801, Amsterdam, 1994.

    Google Scholar 

  42. COLTMAN J.W., Sounding Mechanism of the Flute and Organ Pipe,J. Acoust. Soc. Amer., Vol. 44, No. 4, pp. 983–992,1968.

    Google Scholar 

  43. COLTMAN J.W., Jet Drive Mechanisms in Edge Tones and Organ Pipes,J. Acoust. Soc. Amer, Vol. 60, No. 3, pp. 725–733,1976.

    Google Scholar 

  44. CONDAMNES R., Les criteres physiques de la qualité acoustique des salles,Revue d’Acoustique, No. 26, p. 192–204,1973.

    Google Scholar 

  45. COOK P.R., A Meta-Wind-Instrument Physical Model, and Meta-Controller for Real Time Performance Control, Proc. of the ICMC, San Jose, CA, U.S.A., 1992.

    Google Scholar 

  46. CZYZEWSKI A., SANKIEWICZ M., Subjective Methods for the Assessing Properties of Artificial Reverberation, 84th Audio Eng. Soc. Cony., Preprint No. 2643, Paris, 1988.

    Google Scholar 

  47. CZYZEWSKI A., A Method of Artificial Reverberation Quality Testing, J. Audio Eng. Soc., Vol. 38, No. 3, pp. 129–141,1990.

    Google Scholar 

  48. CZYZEWSKI A., KACZMAREK A., Multilayer Knowledge Base System for Speaker Independent Recognition of Isolated Words, Proc. RSKD-93, pp. 411–420, 1993.

    Google Scholar 

  49. CZYZEWSKI A., KACZMAREK A., Speech Recognition Systems Based on Rough Sets and Neural Networks, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 97–100, 1994.

    Google Scholar 

  50. CZYZEWSKI A., KACZMAREK A., Speaker-independent Recognition of Isolated Words Using Rough Sets, Joint Conf. on Information Sciences, Wrightswille Beach, NC, U.S.A., pp. 397–400, 1995.

    Google Scholar 

  51. CZYZEWSKI A., Learning Algorithms for Audio Signal Enhancement. Part 2: Implementation of the Rough-Set Method for the Removal of Hiss, J. Audio Eng. Soc., Vol. 45, No. 11, pp. 931–943, 1997.

    Google Scholar 

  52. CZYZEWSKI A., KOSTEK B., ZIELINSKI S., Synthesis of Organ Pipe Sound Based on Simplified Physical Models, Archives of Acoustics, Vol. 21, No. 2, pp. 131–147, 1996.

    Google Scholar 

  53. CZYZEWSKI A., KOSTEK B., Tuning the Perceptual Noise Reduction Algorithm Using Rough Sets, Lecture Notes in Artificial Intelligence No. 1424, in Rough Sets and Current Trends in Computing, (POLKOWSKI L., SKOWRON A., Eds.), Proc. RSCTC’98, pp. 467–474, Springer-Verlag, Heidelberg and New York 1998.

    Chapter  Google Scholar 

  54. CZYZEWSKI A., KRÓLIKOWSKI R., Application of Fuzzy Logic and Rough Sets to Audio Signal Enhancement, chapter in Rough Fuzzy Hybridization: A New Trend in Decision Making, PAL S.K., SKOWRON A. (Eds.), Springer-Verlag, Singapore 1998 (in print).

    Google Scholar 

  55. DAMASKE P., ANDO Y., Interaural Crosscorrelation for Multichannel Loudspeaker Reproduction, Acustica, Vol. 27, pp. 232–238, 1972.

    Google Scholar 

  56. DE BRUN N A., Timbre-Classification of Complex Tones,Acustica, Vol. 40, pp. 108–114,1978.

    Google Scholar 

  57. DE MILANO (Ed.), Mind Over MIDI, Keyboard Magazine Basic Library, California, U.S.A., 1987.

    Google Scholar 

  58. DE POLI G., PICCIALLI A., ROADS C., Representation of Musical Signals, MIT Press, London 1991.

    Google Scholar 

  59. DONNADIEU S., McADAMS S., WINSBERG S., Caractérisation du Timbre des Sons Complexes. I. Analyse Multidimensionelle, J. de Physique IV, Vol. 4, 3 CFA, I, pp. 593–596, 1994.

    Google Scholar 

  60. EISLER H., Measurement of Perceived Acoustic Quality of Sound-Reproducing Systems by Means of Factor Analysis,J. Acoust. Soc. Amer., Vol. 39, No. 3, pp. 484–492,1966.

    Google Scholar 

  61. EVANGELISTA G., Pitch-Synchronous Wavelet Representations of Speech and Music Signals, IEEE Trans. Signal Proc., Vol. 41, No. 12, pp. 3313–3330, 1993.

    Article  ADS  MATH  Google Scholar 

  62. FABRE B., HIRSCHBERG A., WIJNANDS A.P.J., Vortex Shedding in Steady Oscillation of a Flue Organ Pipe, Acta Acustica, Vol. 82, No. 6, pp. 863–877, 1996.

    Google Scholar 

  63. FASTL H., The Psychoacoustics of Sound-Quality Evaluation,Acustica, Vol. 83, No. 5, pp. 754–764,1997.

    Google Scholar 

  64. FEl’l’EN B., STEFFEN E., VAHLE T., MERKEL A., Coding Margin, a Measure for the Headroom of Perceptual Codecs, Intern. Cony. on Sound Design, pp. 336–355, Tonmeistertagung, Karlsruhe, 1996.

    Google Scholar 

  65. FLETCHER N.H., Nonlinear Interactions in Organ Flue Pipes, J. Acoust. Soc. Amer., Vol. 56, No. 2, pp. 645–652,1974.

    Google Scholar 

  66. FLETCHER N.H., Transients in the Speech of Organ Flue Pipes–A Theoretical Study, Acustica, Vol. 34, pp. 224–233, 1976.

    Google Scholar 

  67. FLETCHER N.H., ROSSING T.D., The Physics of Musical Instruments, Springer-Verlag, New York 1991.

    Book  Google Scholar 

  68. de FURIA S., SCACCIAFERRO J., The MIDI Book - Using MIDI and Related Interfaces, Third Earth Production, 1986.

    Google Scholar 

  69. GADE A. C., Assessment of Sound Quality in Auditoria, 90th Audio Eng Soc. Cony., Preprint No. 3071, Paris, 1991.

    Google Scholar 

  70. GENOSSAR T., PORAT M., Can One Evaluate the Gabor Expansion Using Gabor’s Iterative Algorithm, IEEE Trans. Signal Processing, Vol. 40, No. 8, pp. 1852–1861, 1992.

    Article  ADS  MATH  Google Scholar 

  71. GREWIN C., BERGMAN S., KEJVING O., A Listening Test System for Evaluation of Audio Equipment, 80th Audio Eng. Soc. Cony., Preprint No. 2335, Montreux, 1986.

    Google Scholar 

  72. GRZYMALA-BUSSE J.W., LAKSHMANAN A., LEA/I2 with Interval Extension: An Induction Algorithm for Numerical Attributes, Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 67–73, Tokyo, 1996.

    Google Scholar 

  73. GRZYMALA-BUSSE D.M., GRZYMALA-BUSSE J.W., Comparison of Machine Learning and Knowledge Against Methods of Rule Induction Based on Rough Sets, Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, London 1994.

    Google Scholar 

  74. GUILLEMAIN P., KRONLAND-MARTINET R., Parameters Estimation Through Continuous Wavelet Transform for Synthesis of Audio-Sounds, 90th Convention AES, Preprint No. 3009 (A-2), Paris, 1991.

    Google Scholar 

  75. GUSKI R., Psychological Methods for Evaluating Sound Quality and Assessing Acoustic Information, Acustica, Vol. 83, No. 5, pp. 765–774,1997.

    Google Scholar 

  76. HAWKES R.J., DOUGLAS H., Subjective Acoustic Experience in Concert Auditoria, Acustica, Vol. 24, pp. 236–250, 1971.

    Google Scholar 

  77. HERRE J., BRANDENBURG K., EBERLEIN E., GRILL B., Second Generation ISO/MPEG Audio Layer III Coding, 98th AES Convention, Preprint No. 3939, Paris, 1995.

    Google Scholar 

  78. HONG T-P., CHEN J-B., Automatic Acquisition of Membership Functions by Data Analysis, Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 315–319, Tokyo, 1996.

    Google Scholar 

  79. HOUTGAST T., STEENEKEN H.J.M., A Review of the MTF Concept in Room Acoustics and its Use for Estimating Speech Intelligibility in Auditoria, J. Acoust. Soc. Amer., Vol. 77, No. 3, pp. 1069–1077, 1985.

    Article  ADS  Google Scholar 

  80. HUA L., YUANDONG J., Fuzzy-Logic Tools on Tap for IC Wafers, IEEE Circuits and Devices, pp. 30–35, 1994.

    Google Scholar 

  81. HULBERT G.M., BAXA D.E., SEIREG A., Criterion for Quantitative Rating and Optimum Design of Concert Halls, J. A.oust. Soc. Amer., Vol. 71, No. 3, pp. 619–629, 1982.

    Article  ADS  Google Scholar 

  82. ISHIKAWA M., Structural Learning and Rule Discovery, Proc. 3rd Conf. Neural Networks and Their Applications, pp. 17–29, Kule, Poland 1997.

    Google Scholar 

  83. IVERSON P., KRUMHANSL C.L., Isolating the Dynamic Attributes of Musical Timbre, J. Acoust. Soc. Amer., Vol. 94, No. 5, pp. 2595–2603, 1993.

    Article  ADS  Google Scholar 

  84. JOHNSTON J., Transform Coding of Audio Signals Using Perceptual Noise Criteria,J. IEEE Select. Areas on Commun., Vol. 6, No. 2, 1988.

    Google Scholar 

  85. JULLIEN J.P., Qualite acoustique d’une salle, CNET, Lannion 1986.

    Google Scholar 

  86. KACPRZYK J., FEDDRIZZI M. (eds), Fuzzy Regression Analysis, Vol. 1, Omnitech Press, Warsaw and Physica-Verlag (Springer-Verlag), Heidelberg and New York 1992.

    MATH  Google Scholar 

  87. KACZMAREK A., CZYZEWSKI A., KOSTEK B., Investigating Polynomial Approximation for the Spectra of the Pipe Organ Sound, Archives of Acoustics, (in print), 1998.

    Google Scholar 

  88. KARNIN E.D., A simple procedure for pruning back propagation trained neural networks, IEEE Trans. Neural Networks, Vol. 1, pp. 239–242, 1990.

    Article  Google Scholar 

  89. KAY S.M., Modern Spectral Estimation: Theory and Application, Englewood Cliffs, New Jersey 1988.

    Google Scholar 

  90. KEEFE D.H., LADEN B., Correlation Dimension of Woodwind Multiphonic Tones, Technical Report Series No. 9102, Univ. of Washington, Seattle, 1991.

    Google Scholar 

  91. KEELER J.S., The Attack Transients of Some Organ Pipes,IEEE Trans. on Audio and Electroacoustics, AU-20, Vol. 5, pp. 378–391,1972.

    Google Scholar 

  92. KEIPER W., Sound Quality Evaluation in the Product Cycle,Acustica, Vol. 83, No. 5, pp. 784–788,1997.

    Google Scholar 

  93. KIRBY D., WATANABE K., Formal Subjective Testing of the MPEG-2 NBC Multichannel Coding Algorithm, 101st Audio Eng. Soc. Cony., Preprint No. 4418, Los Angeles, 1996.

    Google Scholar 

  94. KUPPEL W., Multidimensional Relationship between Subjective Listening Impression and Objective Loudspeaker Parameters,Acustica, Vol. 70, pp. 45–54, 1990.

    Google Scholar 

  95. KOSKO B., Neural Networks and Fuzzy Systems, Prentice-Hall Intern. Ed., New Yersey, 1992.

    Google Scholar 

  96. KOSKO B., Fuzzy Engineering, Prentice-Hall Intern. Ed., New Yersey, 1997.

    Google Scholar 

  97. KOSTEK B., CZYZEWSKI A., Articulation Features in the Digitally Controlled Pipe Organ, J. Audio Eng. Soc., Vol. 39, No. 5, p. 382, 1991, 90th AES Convention, Preprint No. 3023, Paris, 1991.

    Google Scholar 

  98. KOSTEK B., CZYZEWSKI A., Computer Modelling of the Pipe Organ Valve Action, J. Audio Eng. Soc., Vol. 40, No. 5, p. 440, 1992, 92nd AES Convention, Preprint No. 3266, Vienna, 1992.

    Google Scholar 

  99. KOSTEK B., Untersuchungen an Orgeltrakturen unter dem Aspekt musikalischer Artikulierung,Fortschritte Der Akustik, Teil A, Proc. DAGA ‘82, pp. 245–248, Berlin, 1992.

    Google Scholar 

  100. KOSTEK B., CZYZEWSKI A., Investigation of Articulation Features in Organ Pipe Sound, A.chives of Acoustics, Vol. 18, No. 2, 3, pp. 417–434, 1993.

    Google Scholar 

  101. KOSTEK B., Application des réseaux de neurones pour l’analyse de l’articulation musicale,J. de Physique IV, Vol. 4, pp. 597–600,1994.

    Google Scholar 

  102. KOSTEK B., Intelligent Control System Implementation to the Pipe Organ Instrument, in Rough Sets, Fuzzy Sets and Knowledge Discovery (ZIARKO W.P., Ed.), pp. 450–457, Springer-Verlag, London 1994.

    Google Scholar 

  103. KOSTEK B., Application of Learning Algorithms to Musical Sound Analyses,97th AES Cony., Preprint No. 3873, San Francisco, J. Audio Eng Soc. (Abstr), Vol. 42, No. 12, p. 1050,1994.

    Google Scholar 

  104. KOSTEK B., Rough Classification as a Tool for Acoustical Analyses,in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 81–84, 1994.

    Google Scholar 

  105. KOSTEK B., KACZMAREK A., Musical Sound Parametrization Methods Based on Spectral and Cepstral Transformations, Proc. VI Symposium on Sound Eng and Tonmastering, Warsaw, 1995.

    Google Scholar 

  106. KOSTEK B., Statistical Versus Artificial Intelligence Based Processing of Subjective Test Results,98th Audio Eng. Soc. Cony., Preprint No. 4018, Paris, J. Audio Eng. Soc. (Abstracts), Vol. 43, No. 5, p. 403, 1995.

    Google Scholar 

  107. KOSTEK B., Methoden kuenstlicher Intelligenz in Analysen des Musikklangs,Proc. DAGA’95, Saarbruecken, 1995.

    Google Scholar 

  108. KOSTEK B., Automatic Reasoning About Acoustic Data-Problems with Preprocessing, Classification and Decision Uncertainty,Proc. Conf of the Intelligent Data Analysis (IDA-95), The International Institute for Advanced Studies in Systems Research and Cybernetics, Vol. 1, pp. 99–103, Baden-Baden, 1995.

    Google Scholar 

  109. KOSTEK B., Distinctive Features of Musical Signal, Proc. VI Symposium on Sound Eng. and Tonmastering, Warsaw, 1995.

    Google Scholar 

  110. KOSTEK B., Computer Based Recognition of Musical Phrases Using the Rough Set Approach, Proc. Second Annual Joint Conference on Information Sciences, North Carolina, U.S.A., 1995.

    Google Scholar 

  111. KOSTEK B., Feature Extraction Methods for the Intelligent Processing ofMusical Signals,Proc. 99th Convention AES, Preprint No. 4076 (H4), New York, J. Audio Eng. Soc. (Abstracts), Vol. 43, No. 12, 1995.

    Google Scholar 

  112. KOSTEK B., SZCZERBA M., Parametric Representation ofMusical Phrases, 101st Audio Eng Soc. Cony., Preprint No. 4337 (D-3), Los Angeles, 1996.

    Google Scholar 

  113. KOSTEK B., SZCZERBA M., MIDI Database for the Automatic Recognition of Musical Phrases, 100th Convention AES, Preprint No. 4169 (E-2), Copenhagen, 1996.

    Google Scholar 

  114. KOSTEK B., CZYZEWSKI A., Automatic Classification of Musical Timbre Based on Learning Algorithms Applicable to Cochlear Implants, Proc. TASTED, Expert Systems, and Neural Networks, pp. 98–101, Honolulu, Hawaii, U.S.A., 1996.

    Google Scholar 

  115. KOSTEK B., SZCZERBA M., WIECZORKOWSKA A., Musical Databases - Construction and Analysis, Intern. Cony. on Sound Design, Proc. 19th Tonmeistertagung, Karlsruhe, 1996.

    Google Scholar 

  116. KOSTEK B., WIECZORKOWSKA A., Study of Parameter Relations in Musical Instrument Patterns, 100th Convention AES, Preprint No. 4173 (E-6), Copenhagen, J. A.dio Eng. Soc. (Abstracts), Vol. 44, No. 7 /8, p. 634, 1996.

    Google Scholar 

  117. KOSTEK B., CZYZEWSKI A., Method and Apparatus for the Electronic Control of the Pipe Organ, Polish Patent, No. 1699913, 1996.

    Google Scholar 

  118. KOSTEK B., SZCZERBA M., Rough Set-Based Analysis of Musical Databases, Proc. EUFIT’96, Vol.l, pp. 144–148, Aachen, 1996.

    Google Scholar 

  119. KOSTEK B., Intelligent Analysis of Musical Databases,Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 300305, Tokyo, 1996.

    Google Scholar 

  120. KOSTEK B., Rough Set and Fuzzy Set Methods Applied to Acoustical Analyses,J. Tntell. Automation and Soft Computing - Autosoft, Vol. 2, No. 2, pp. 147–158,1996.

    Google Scholar 

  121. KOSTEK B., Articulation Related Features in the Pipe Organ Sound,Archives of Acoustics, Vol. 22, No. 2, pp. 219–244,1997.

    Google Scholar 

  122. KOSTEK B., KRÓLIKOWSKI R., Application of Neural Networks to the Recognition of Musical Sounds, Archives of Acoustics, Vol. 22, No. 1, pp. 27–50, 1997.

    Google Scholar 

  123. KOSTEK B., KRÓLIKOWSKI R., Artificial Neural Network as a Classifier of Musical Instrument Sounds, Proc. EUFIT’97, Aachen, pp. 485–489, 1997.

    Google Scholar 

  124. KOSTEK B., Soft Set Approach to the Subjective Assessment of Sound Quality,Proc. InterSymp’97, Baden-Baden, Advances in Artificial Intelligence and Engineering Cybernetics, Vol. IV, pp. 107–111,1997.

    Google Scholar 

  125. KOSTEK B., Sound Quality Assessment Based on the Rough Set Classifier,Proc. EUFIT’97, pp. 193–195, Aachen, 1997.

    Google Scholar 

  126. KOSTEK B., SZCZERBA M., CZYZEWSKI A., Rough Set Based Analysis of Computer Musical Storage, Proc. ICCIMA’97, pp. 140–144, Brisbane, Australia, 1997.

    Google Scholar 

  127. KOSTEK B., SZCZERBA M., Application of Algorithms Dealing with Time Domain Uncertainty for the Automatic Recognition of Musical Phrases, 102nd Convention AES, Preprint No. 4502, Munich, 1997.

    Google Scholar 

  128. KOSTEK B., WIECZORKOWSKA A., A System for Musical Sound Parameter Database Creation and Analysis, 102nd Convention AES, Preprint No. 4498 ( N3 ), Munich, 1997.

    Google Scholar 

  129. KOSTEK B., WIECZORKOWSKA A., Parametric Representation of Musical Sounds, Archives ofAcoustics, Vol. 22, No. 1, pp. 2–26, 1997.

    Google Scholar 

  130. KOSTEK B., Computer-Based Recognition of Musical Phrases Using the Rough-Set Approach, J. Information Sciences, Vol. 104, pp. 15–30,1998.

    Google Scholar 

  131. KOSTEK B., Soft Set Approach to the Subjective Assessment of Sound Quality, FUZZ-IEEE’98 (World Congress on Computational Intelligence), pp. 669–674, Anchorage, Alaska, U.S.A., May 1998.

    Google Scholar 

  132. KOSTEK B., Automatic Recognition of Sounds of Musical Instruments: An Expert Media Application, World Automation Congress, WAC’98, IFMIP-053, Anchorage, Alaska, U.S.A., May 1998.

    Google Scholar 

  133. KOSTEK B., Soft Computing-Based Recognition of Musical Sounds,chapter in Rough Sets in Data Mining and Knowledge Discovery I/II,POLKOWSKI L., SKOWRON A. (Eds.), Physica-Verlag (Springer-Verlag), Chapter 11, pp. 193–213, 1998.

    Google Scholar 

  134. KOSTEK B. Assessment of Concert Hall Acoustics Using Rough Set and Fuzzy Set Approachchapter in Rough-Fuzzy Hybridization: A New Trend in Decision MakingPAL S.K., SKOWRON A. (Eds.), Springer-Verlag, Singapore 1998 (in print).

    Google Scholar 

  135. KRIMPHOFF J., McADAMS S., WINSBERG S., Caracterisation du Timbre des Sons Complexes. II. Analyses acoustiques et quantification psychophysique, J. de Physique IV, Vol. 4, pp. 625–628, 1994.

    Article  Google Scholar 

  136. KRÒLIKOWSKI R., B. KOSTEK B., Recognition of Musical Instruments Based on Neural Networks, Proc. 3rd Conf. on Neural Networks and Their Applications, pp. 195–200, Kule, Poland, 1997.

    Google Scholar 

  137. KRUSKAL J.B., Multidimesional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis, Psychometrika, Vol. 29, No. 1, pp. 1–27, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  138. KRAMER P.S., Mean Free Path Length for Radiating Point Sources in Specular Reflecting Enclosures, Acta Acustica, Vol. 83, No. 4, pp. 629–634, 1997.

    Google Scholar 

  139. KU’I RUFF H., Energetic Sound Propagation in Rooms,Acta Acustica, Vol. 83, No. 4, pp. 622–628,1997.

    Google Scholar 

  140. LAMORAL R., Point actuel de l’acoustique des salles, Revue d’Acoustique, No. 26, pp. 190–191, 1973.

    Google Scholar 

  141. LEHMAN P., WILKENS H., Zusammenhang Subjectiver Beurteilungen von Konzertsalen mit Raumakustichen Kriterien, Acustica, Vol. 15, pp. 226–268, 1980.

    Google Scholar 

  142. LEACH J., FITCH J.: Nature, Music, and Algorithmic Composition, Computer Music Journal, Vol. 19, No. 2, 1995.

    Google Scholar 

  143. LENARCIK A., PIASTA Z., Deterministic Rough Classifiers, in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.SA., pp. 434–441, 1994.

    Google Scholar 

  144. LEONARTIES I.J., BILLINGS S.A., Input-Output Parametric Models for Non-Linear Systems Part II: Stochastic Non-Linear Systems, hit. J. Control, Vol. 41, No. 2, pp. 329–344, 1985.

    Article  MathSciNet  Google Scholar 

  145. LOY1i’RMOSER W., Acoustical Design of Modern German Organs,J. Acoust. Soc. Amer., Vol. 29, No. 6, pp. 682–689,1957.

    Google Scholar 

  146. LITOWSKI T., Auditory Evaluation of Acoustic Devices, Music Academy of Warsaw, Warsaw, 1984.

    Google Scholar 

  147. MAGOULAS G., VRAHATIS M., ANDROULAKIS G., Effective Backpropagation Training with Variable Stepsize, Neural Networks, Vol. 10, No. 1, pp. 69–82, January 1997.

    Article  Google Scholar 

  148. MALLAT S., Zero-Crossings of a Wavelet Transform, IEEE Trans. on Information Theory, Vol. 37, No 4, pp. 1019–1033, July 1991.

    Article  MathSciNet  Google Scholar 

  149. MALLOCH S.N., CAMPBELL A.M., An investigation of musical timbre, J. de Physique IV, Vol. 4, pp. 589–592, 1994.

    Google Scholar 

  150. MARPLE Jr. S.L., Digital Spectral Analysis: with Applications, Englewood Cliffs, New Jersey, 1987.

    Google Scholar 

  151. McAULAY R.J., QUATIERI T.F., Speech Analysis/Synthesis Based on a Sinusoidal Representation, IEEE Trans. Acoust, Speech, Signal Processing, Vol. ASSP-34, pp. 744–754, 1986.

    Google Scholar 

  152. McINTYRE M.E., SCHUMACHER R.T.,WOODHOUSE J., On the Oscillation of Musical Instruments, J. Acoust. Soc. Amer., Vol. 74, No. 5, pp. 1325–1345, 1983.

    Article  ADS  Google Scholar 

  153. MEYER J., The Sound of the Orchestra, J. Audio Eng Soc., Vol. 41, No. 4, pp. 203212, 1993.

    Google Scholar 

  154. MEYER Y., Wavelets and Applications, Springer-Verlag, Paris 1992.

    Google Scholar 

  155. MONRO G., Fractal Interpolation Waveforms,Comp. Music Journal, Vol. 19, No. 1, pp. 88–98,1995.

    Google Scholar 

  156. MORANDO M., MUSELLI M., GUARIANO M., Musical Rhythm Recognition with Neural Networks, Proc. LASTED, Artificial Intelligence, Expert Systems, and Neural Networks, pp. 229–232, Honolulu, Hawaii, U.S.A., 1996.

    Google Scholar 

  157. MOURJOPOULOS J., TSOUKALAS D., Neural Network Mapping to Subjective Spectra of Music Sounds, 90th J. Audio Eng. Soc. Cony., Preprint No. 3064, Paris 1991, J. Audio Eng. Soc. (Abstr), Vol. 39, 5, (1991).

    Google Scholar 

  158. NOLLE A.W., FINCH T.L., Starting Transients of Flue Organ Pipes in Relation to Pressure Rise Time, J. Acoust Soc. Amer., Vol. 91, No. 4, pp. 2190–2202, 1992.

    Article  ADS  Google Scholar 

  159. OMEN W., BONT F., KERKHOF L., Variable Bit Rate Coding for MPEG - 1 Audio, Layers I and II, 98thAES Convention, Preprint No. 3938, Paris, 1995.

    Google Scholar 

  160. ORR R.S., The Order of Computation of Finite Discrete Gabor Transforms,IEEE Trans. Signal Processing, Vol. 41, No 1, pp. 122–130,1993.

    Google Scholar 

  161. PAWLAK Z., Rough Sets,J. Computer and Information Science, Vol. 11, No. 5, pp. 341–356,1982.

    Google Scholar 

  162. PAWLAK Z., Data versus Logic - A Rough Set View,Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 1–8, Tokyo, 1996.

    Google Scholar 

  163. PAWLAK Z., Reasoning about Data - A Rough Set Perspective, Lecture Notes in Artificial Intelligence No. 1424, in Rough Sets and Current Trends in Computing, (POLKOWSKI L., SKOWRON A., Eds.), Proc. RSCTC’98, pp. 25–34, Springer-Verlag, Heidelberg and New York 1998.

    Google Scholar 

  164. PIEZO FILM SENSORS TECHNICAL MANUAL, AMP Inc. Piezo Film Sensors, Basic Design Kit, U.S.A., 1993.

    Google Scholar 

  165. POLLARD H.F., Time Delay Effects in the Operation of a Pipe Organ, Acustica, Vol. 20, No. 4, pp. 189–199,1968.

    Google Scholar 

  166. POLLARD H.F., JANSSON E.V., A Tristimulus Method for the Specification of Musical Timbre, Acustica, Vol. 51, 162–171, 1982.

    Google Scholar 

  167. POLKOWSKI L., SKOWRON A. (Eds.), Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence, Springer-Verlag, Heidelberg and New York 1998.

    MATH  Google Scholar 

  168. POLKOWSKI L., SKOWRON A. (Eds.), Rough Sets in Knowledge Discovery 1: Methodology and Applications, Physica-Verlag, Heidelberg and New York 1998.

    MATH  Google Scholar 

  169. POLKOWSKI L., SKOWRON A. (Eds.), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Physica-Verlag ( Springer-Verlag ), Heidelberg and New York 1998.

    Google Scholar 

  170. POWELL A., On the Edgetone,J. Acoust. Soc. Amer., Vol. 33, No. 4, pp. 395–409, 1961.

    Google Scholar 

  171. PRATT R.L., DOAK P.E., A Subjective Rating Scale for Timbre, J. Sound and Vibration, Vol. 45, No. 3, pp. 317–328, 1976.

    Article  ADS  Google Scholar 

  172. PRESS W.H., FLANNERY B.P., TEUKOLSKY S.A., VE’FIERLING, Numerical Recipes, Cambridge University Press, 1986.

    Google Scholar 

  173. PULACZEWSKI J., SZACKA K., MANITIUS A., Theory of Automation, PWN, Warsaw, 1974 (in Polish).

    Google Scholar 

  174. QUTAN S., CHEN D., Discrete Gabor Transform, IEEE Trans. on Signal Processing, Vol. 41, No. 7, pp. 2429–2438, 1993.

    Article  ADS  Google Scholar 

  175. RABINER L.R, ROSENBERG A.E, LEVINSON S.E., Considerations in Dynamic Time Warping Algorithms for Discrete Word Recognition, IEEE Trans. on Acoustics, S.eech, and Signal processing, Vol. ASSP-26, No. 6, 1978.

    Google Scholar 

  176. RABINER L.R, SCHAFER R.W., Digital Processing of Speech Signals, Englewood Cliffs, Prentice Hall, 1978.

    Google Scholar 

  177. RAKOWSKI A., RICHARDSON E.G., Eine Analyse des Intonierungsvorganges bei Orgeln, Gravesaner Blätter, Vol. 15, No. 16, pp. 46–58, 1960.

    Google Scholar 

  178. REICHARDT W., ALIM A.O., SCHMIDT W., Definition und Messgrundlage eines objektiven Masses zur Ermittlung der Grenze zwischen brauchbarer und unbrauchbarer Durchsichtigkeit bei Musikdarbietung, Acustica, Vol. 32, pp. 126137, 1975.

    Google Scholar 

  179. RHEE H-S., OH K-W., Unsupervised Neural Network for Fuzzy Clustering, Proc. EUFIT’96, Vol. 2, pp. 715–719, Aachen, 1996.

    Google Scholar 

  180. ROEDERER J.G., Introduction to the Physics and Psychophysics of Music,Springer-Verlag, Vol. 16, New York and Heidelberg 1979.

    Google Scholar 

  181. SANDELL G.J., SHARC - Sandell Harmonic Archive, Database of Musical Timbre Information (unpublished material), 1994.

    Google Scholar 

  182. SANDELL G.J., MARTENS W.M., Perceptual Evaluation ofPrincipal-ComponentBased Synthesis of Musical Timbres, J. Audio Eng. Soc., Vol. 43, No. 12, pp. 10131028, 1995.

    Google Scholar 

  183. SCHROEDER M.R., GOTTLOB D., SIEBRASSE K.F., Comparative Study of European Concert Halls, Correlation of Subjective Preference with Geometric and Acoustic Parameters, J. Acoust. Soc. Amer., Vol. 56, No. 4, pp. 1195–1201, 1974.

    Article  ADS  Google Scholar 

  184. SCHROEDER M.R., Natural Sounding of Artificial Reverberation,J. Audio Eng. Soc., Vol. 10, No. 3, pp. 219–223,1962.

    Google Scholar 

  185. SCHROEDER M.R., Self-Similarity and Fractals in Science and Art,J. Audio Eng Soc., Vol. 37, No. 10,1989.

    Google Scholar 

  186. SCHUMACHER R.T., Self-Sustained Oscillations of Organ Flue Pipes: An Integral Equation Solution,Acustica, Vol. 39, pp. 225–238,1978.

    Google Scholar 

  187. SHLIEN S., SOULODRE G., Measuring the Characteristics of Expert Listeners, 101st Audio Eng. Soc. Cony., Preprint No. 4339, Los Angeles, U.S.A., 1996.

    Google Scholar 

  188. SKOWRON A., Data Filtration: a Rough Set Approach,in Rough Sets, Fuzzy Sets and Knowledge Discovery, (ZIARKO W.P., Ed.), Springer-Verlag, pp. 108–118, London 1994.

    Google Scholar 

  189. SKOWRON A., Decision Rules Based on Discernibility Matrices and Decision Matrices,in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 69,1994.

    Google Scholar 

  190. SKOWRON A., NGUYEN S.H., Quantization of Real Value Attributes: Rough Set and Boolean Reasoning Approach, ICS Research Report 11/95, Warsaw, 1995.

    Google Scholar 

  191. SLOWINSKI R., STEFANOWSKI J., SUSUMAGA R., Rough Set Analysis of Attribute Dependencies in Technical Databases, Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 284–291, Tokyo, 1996.

    Google Scholar 

  192. SLOWINSKI R., Rough Set Processing of Fuzzy Information,in Soft Computing (LIN T.Y., WILDBERGER A.M., Eds.), Proc. 3rd Intern. Workshop on Rough Sets and Soft Computing, San Jose, CA, U.S.A., pp. 142–145,1994.

    Google Scholar 

  193. SMITH III J.O., Physical Modeling Using Digital Waveguides,Computer Music Journal, special issue on Physical Modeling of Musical Instruments, Part I, Vol. 16, No. 4, pp. 79–91,1992.

    Google Scholar 

  194. SMITH M., SMAILL A. WIGGINS GA. (Eds.), Music Education: An Artificial Intelligence Approach, Workshops in Computing, Springer-Verlag, Edinburgh 1993.

    Google Scholar 

  195. SPORER TH., Objective Audio Signal Evaluation Applied Psychoacoustics for Modeling the Perceived Quality of Digital Audio,103rd Audio Eng. Soc. Cony., Preprint No. 4512, New York, 1997.

    Google Scholar 

  196. STEENEKEN H.J.M., HOUTGAST T., A Physical Method for Measuring Speech Transmission Quality, J. Acoust. Soc. Amer., Vol. 67, No. 1, pp. 318–326, 1980.

    Article  ADS  Google Scholar 

  197. STOLL G., A Perceptual Coding Technique Offering the Best Compromise between Quality, Bit-Rate and Complexity for DSB,94th AES Convention, Preprint No. 3458, Berlin, 1993.

    Google Scholar 

  198. SUGENO M., An Introductory Survey of Fuzzy Control,Information Sciences, Vol. 36, pp. 59–83, 1985.

    Google Scholar 

  199. TADEUSIEWICZ R. Speech SignalWKiL, Warsaw 1988 (in Polish).

    Google Scholar 

  200. TADEUSIEWICZ R. Neural NetsAcademic Printing Office RM, Warsaw 1993 (in Polish).

    Google Scholar 

  201. TANGUTANE A.S., Artificial Perception and Music Recognition, Lecture Notes in Artificial Intelligence, Springer-Verlag, Berlin 1993.

    Google Scholar 

  202. THE NEW GROVE DICTIONARY OF MUSIC AND MUSICIANS edited by S. Sadie, Macmillan Publishers, London, Washington, Hong Kong, 1980.

    Google Scholar 

  203. THIELE R., Richtungsverteilung und Zeitfolge der Schallrueckwurfe in Raumen, Acustica, Vol. 3, pp. 291–302, 1953.

    Google Scholar 

  204. TSUMOTO S., YAO Y.Y., HADJIlvIICHAEL M. (Eds.), Bulletin of International Rough Set Society, Vol. 2, No. 1, June 1998.

    Google Scholar 

  205. UEMATSU H., OZAWA K., SUZUKI Y., SONE T., A Consideration on the Timbre of Complex Tones Only Consisting of Higher Harmonics, Proc. 15th Intern. Congress on Acoustics, T.ondheim, Norway, pp. 509–512, 1995.

    Google Scholar 

  206. VÄLIMAKI V., KARJALAINEN M., JANOSY Z., LAINE U.K., A Real-Time DSP Implementation of a Flute Model, Proc. hit. Conf. Acoustics, Speech and Signal Processing (ICASSP’92), San Francisco, 1992.

    Google Scholar 

  207. VÄLIMÄKI V., HUOPANIEMI J., KARJALAINEN M., JANOSY Z., Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis, 98th Audio Eng. Soc. Cony., Preprint No. 3956, Paris, 1995, J. Audio Eng. Soc. (Abstr), Vol. 41, No. 5, 1995.

    Google Scholar 

  208. Wavelets - Theory, Algorithms and Applications, CHUI Ch.K., MONTEFUSCO L., PUCCO L. (Eds.), Academic Press, Inc., San Diego 1994.

    Google Scholar 

  209. VERGE M.P., CAUSSE R., FABRE B., HIRSCHBERG A., WUNANDS A.P.J., VAN STEENBERGEN A., Jet Oscillations and Jet Drive in Recorder-Like Instruments, ActaAcustica, Vol. 2, No. 5, pp. 403–419, 1994.

    Google Scholar 

  210. VERGE M.P., FABRE B., MAHU W.E.A., HIRSCHBERG A., Jet Formation and Jet Velocity Fluctuations in a Flue Organ Pipe, J. A.oust. Soc. Amer., Vol. 95, No. 2, pp. 1119–1132, 1994.

    Article  ADS  Google Scholar 

  211. WESTHEAD M.D., SMAILL A., Automatic Characterisation of Musical Style, in Music Education: An Artificial Intelligence Approach, SMITH M., SMAILL A. WIGGINS G.A. (Eds.), Workshops in Computing, pp. 157–170, Springer-Verlag, Edinburgh 1993.

    Google Scholar 

  212. WIDMANN U., Three Application Examples for Sound Quality Design Using Psychoacoustic Tools,Acustica, Vol. 83, No. 5, pp. 819–826,1997.

    Google Scholar 

  213. WIDMER G., Modeling the Rational Basis of Musical Expression,Computer Music Journal, Vol. 19, No. 2, pp. 76–96,1995.

    Google Scholar 

  214. WILSON R., CALWAY A. D., PEARSON E. R. S., A Generalized Wavelet Transform for Fourier Analysis, the Multiresolution Fourier Transform and its Application to Image and Audio Signal Analysis, IEEE Trans. on Information Theory, Vol. 38, No 2, pp. 674–690, March 1992.

    Article  MathSciNet  MATH  Google Scholar 

  215. YAGER R.R., KACPRZYK J., FEDRIZZI M. (Eds.), Advances in the Dempster-Shafer Theory and Evidence, Wiley, New York, 1994.

    Google Scholar 

  216. YAMAGUCHI K., Multivariate Analysis of Subjective and Physical Measures of Hall Acoustics,J. Acoust. Soc. Amer., Vol. 52, No. 5, pp. 1271–1279, 1972.

    Google Scholar 

  217. YAMAKAWA T., Stabilization of an Inverted Pendulum by a High-Speed Fuzzy Logic Controller Hardware System,Fuzzy Sets and Systems, Vol. 32, pp. 161–180, 1989.

    Google Scholar 

  218. ZADEH L., Fuzzy Sets,Information and Control, Vol. 8, pp. 338–353, 1965.

    Google Scholar 

  219. ZADEH L., KACPRZYK J. (Eds.), Fuzzy Logic for the Management of Uncertainty, Wiley, New York, 1992.

    Google Scholar 

  220. ZADEH L., KACPRZYK J. (Eds.), Computing with Words in Information/ Intelligent Systems, Physica-Verlag (Springer-Verlag), Heidelberg and New York 1999.

    Google Scholar 

  221. ZEMANKOWA M., KACPRZYK J., (Guest eds.), Integrating Artificial Intelligence and Databases Technologies, Special Issue of J. of Intelligent Information Systems, Vol. 2, No. 4, 1993.

    Google Scholar 

  222. ZIARKO W. (Ed), Rough Sets, Fuzzy Sets, and Knowledge Discovery, Springer-Verlag, London 1994.

    Google Scholar 

  223. ZIARKO W., Analysis of Uncertain Information in the Framework of Variable Precision Rough Sets,Foundations of Computing and Decision Sciences, Vol. 18, No. 3–4, pp. 381–396, Poznan,1993.

    Google Scholar 

  224. ZIARKO W., Review of Basics of Rough Sets in the Context of Data Mining,Proc. 4th International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery (RSFD-96), pp. 447–457, Tokyo,1996.

    Google Scholar 

  225. ZWICKER E., ZWICKER T., Audio Engineering and Psychoacoustics: Matching Signals to the Final Receiver, the Human Auditory System, J. Audio Eng. Soc., Vol. 39, No. 3, pp. 115–126, March 1991.

    MathSciNet  Google Scholar 

  226. ZURADA J., Introduction to Artificial Neural Systems, West Publishing Comp., St. Paul 1992.

    Google Scholar 

  227. ZURADA J., MALINOWSKI A., Multilayer Perceptron Networks: Selected Aspects of Training Optimization, Applied Mathematics and Comp. Science, Vol. 4, No. 3, pp. 281–307, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kostek, B. (1999). References. In: Soft Computing in Acoustics. Studies in Fuzziness and Soft Computing, vol 31. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1875-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1875-8_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-13005-6

  • Online ISBN: 978-3-7908-1875-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics