Skip to main content

Time-dependent Nonlinear Perturbations of Analytic Semigroups

  • Chapter
Functional Analysis and Evolution Equations

Abstract

This paper is concerned with time-dependent relatively continuous perturbations of analytic semigroups and applications to convective reaction-diffusion systems. A general class of time-dependent semilinear evolution equations of the form u t = (A + B(t))u(t), t ∈ (s, τ); u(s) = vD(s) is introduced in a general Banach space X. Here A is the generator of an analytic semigroup in X and B(t) is a possibly nonlinear operator from a subset of the domain of a fractional power (−A)α into X and D(t) = D(B(t)) ⊂ D((−A)α). This type of semilinear evolution equations admit only local and mild solutions in general. In order to restrict the growth of mild solutions and formulate a Lipschitz conditions in a local sense for B(t), a lower semicontinuous functional ϕ: D((−A)α) → [0,+] is introduced and the growth condition of u(·) is formulated in terms of the nonnegative function ϕ(u(·)) and the nonlinear operator B(t) is assumed to be Lipschitz continuous on D ρ (t) ≡ {vD(t): ϕ(v) ≤ ρ for ρ > 0. The main objective is to establish a generation theorem for a nonlinear evolution operator which provides mild solutions to the semilinear evolution equation under the assumption that a consistent discrete scheme exists under a growth condition with respect to ϕ as well as closedness condition for the noncylindrical domain ∪({tD ρ(t)). Moreover, a characterization theorem for the existence of such evolution operator is established in terms of the existence of ϕ-bounded discrete schemes. Our generation theorem can be applied to a variety of semilinear convective reaction-diffusion systems. We here make an attempt to apply our result to a mathematical model which describes a complex physiological phenomena of bone remodeling.

The third author is partially supported by a Grant-in-Aid for Scientific Research (B)(1) No.16340042 from JSPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Amann, Linear and Quasilinear Parabolic Problems. Vol.1, Birkhäuser Verlag, 1995.

    Google Scholar 

  2. H. Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic systems. J. Math. Anal. Appl. 65 (1978), 432–467.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Arendt, Vector-valued Laplace transform and Cauchy problems. Israel J. Math. 59 (1987), 327–352.

    Article  MATH  MathSciNet  Google Scholar 

  4. Z-M. Chen, A remark on flow invariance for semilinear parabolic equations. Israel J. Math. 74 (1991), 257–266.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Da Prato and E. Sinestrari, Differential operators with non-dense domains. Ann. Sc. Norm. Pisa 14 (1987), 285–344.

    MATH  Google Scholar 

  6. K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Math. 194, Springer-Verlag, New York, 2000.

    Google Scholar 

  7. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equation of Second Order. 2nd Edition, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  8. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840, Springer-Verlag, Berlin, 1981.

    MATH  Google Scholar 

  9. H. Kellermann and M. Hieber, Integrated semigroups. J. Funct. Anal. 84 (1989), 160–180.

    Article  MathSciNet  Google Scholar 

  10. V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, Oxford, 1981.

    MATH  Google Scholar 

  11. J.H. Lightbourne III and R.H. Martin,Jr., Relatively continuous nonlinear perturbations of analytic semigroups. Nonlinear Anal., TMA 1 (1977), 277–292.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Lumer, Semi-groupes irréguliers et semi-groupes intégrés: application à l’identifi-cation de semi-groupes irréguliers analytiques et résultats de génération. C.R. Acad. Sci. Paris, 314, Série I (1992), 1033–1038.

    MATH  MathSciNet  Google Scholar 

  13. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16, Birkhäuser Verlag, Basel, 1995.

    Google Scholar 

  14. R.H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces. Wiley-Interscience, New York, 1976.

    MATH  Google Scholar 

  15. T. Matsumoto, Time-dependent nonlinear perturbations of analytic semigroups in Banach spaces. Adv. Math. Sci. Appl. 7 (1997), 119–163.

    MATH  MathSciNet  Google Scholar 

  16. Y. Matsuura, S. Oharu and D. Tebbs, On a class of reaction-diffusion systems describing bone remodeling phenomena. Nihonkai Math. J. 13 (2002), 17–32.

    MATH  MathSciNet  Google Scholar 

  17. Y. Matsuura, S. Oharu, T. Takata and A. Tamura, Mathematical approaches to bone reformation phenomena and numerical simulations. J. Comput. Appl. Math. 158, no. 1 (2003), 107–119.

    Article  MATH  MathSciNet  Google Scholar 

  18. Y. Matsuura and S. Oharu, Mathematical models of bone remodeling phenomena and numerical simulations, I — modeling and computer simulations-. Adv. Math. Sci. Appl. 13, No. 2 (2003), 401–422.

    MATH  MathSciNet  Google Scholar 

  19. G. Nakamura and S. Oharu, Estimation of multiple Laplace transforms of convex functions with an application to analytic (C 0)-semigroups. Proc. Japan Acad. 62, Ser. A (1986), 253–256.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem. Pacific J. 135 (1988), 111–155.

    MATH  MathSciNet  Google Scholar 

  21. S. Oharu, Nonlinear perturbations of analytic semigroups. Semigroup Forum 42 (1991), 127–146.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Oharu and A. Pazy, Locally Lipschitz perturbations of analytic semigroups in Banach spaces. preprint.

    Google Scholar 

  23. S. Oharu and T. Takahashi, Characterization of nonlinear semigroups associated with semilinear evolution equations. Trans. Amer. Math. Soc. 311 (1989), 593–619.

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Oharu and D. Tebbs, Locally relatively continuous perturbations of analytic semigroups and their associated evolution equations. Japan J. Math. 31 (2005), 97–129.

    MATH  MathSciNet  Google Scholar 

  25. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, Berlin, 1983.

    MATH  Google Scholar 

  26. J.J. Peiris, On the duality mapping of L spaces. Hiroshima Math. J. 29 (1999), 89–115.

    MATH  MathSciNet  Google Scholar 

  27. J. Prüss, On semilinear parabolic evolution equations on closed sets. J. Math. Anal. Appl. 77 (1980), 513–538.

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions. J. Math. Anal. Appl. 107 (1985), 16–66.

    Article  MATH  MathSciNet  Google Scholar 

  29. N. Tanaka, Holomorphic C-semigroups and holomorphic semigroups. Semigroup Forum 38 (1989), 253–261.

    Article  MATH  MathSciNet  Google Scholar 

  30. N. Tanaka and I. Miyadera, Exponentially bounded C-semigroups and integrated semigroups. Tokyo J. Math. 12 (1989), 99–115.

    MATH  MathSciNet  Google Scholar 

  31. H.R. Thieme, Integrated semigroups and integral solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152 (1990), 416–447.

    Article  MATH  MathSciNet  Google Scholar 

  32. K. Yosida and E. Hewitt, Finitely additive measures. Trans. Amer. Math. Soc. 72 (1952), 46–66.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Martin, R.H., Matsumoto, T., Oharu, S., Tanaka, N. (2007). Time-dependent Nonlinear Perturbations of Analytic Semigroups. In: Amann, H., Arendt, W., Hieber, M., Neubrander, F.M., Nicaise, S., von Below, J. (eds) Functional Analysis and Evolution Equations. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7794-6_29

Download citation

Publish with us

Policies and ethics