Skip to main content

Adaptive Finite Elements with High Aspect Ratio for Dendritic Growth of a Binary Alloy Including Fluid Flow Induced by Shrinkage

  • Conference paper
  • First Online:
Free Boundary Problems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 154))

  • 1543 Accesses

Abstract

An adaptive phase field model for the solidification of binary alloys in two space dimensions is presented. The fluid flow in the liquid due to different liquid/solid densities is taken into account. The unknowns are the phase field, the alloy concentration and the velocity/pressure in the liquid.

Continuous, piecewise linear finite elements are used for the space discretization, a semi-implicit scheme is used for time discretization. An adaptive method allows the number of degrees of freedom to be reduced, the mesh triangles having high aspect ratio whenever needed.

Numerical results are presented for dendritic growth of four dendrites.

Jacek Narski is supported by the Swiss National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi. Solidification microstructures: Recent developments, future directions. Acta Materialia, 48(1):43–70, 2000.

    Article  Google Scholar 

  2. D. Juric and G. Tryggvason. A front-tracking method for dendritic solidification. J. Comput. Phys., 123(1):127–148, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Jacot and M. Rappaz. A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys. Acta Mater., 50(8):1909–1926, 2002.

    Article  Google Scholar 

  4. M. Fried. A level set based finite element algorithm for the simulation of dendritic growth. Comput. Vis. Sci., 7(2):97–110, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput., 19(1–3):183–199, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.B. Collins and H. Levine. Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B, 31(9):6119–6122, 1985.

    Article  Google Scholar 

  7. G. Caginalp and W. Xie. Phase-field and sharp-interface alloy models. Phys. Rev. E (3), 48(3):1897–1909, 1993.

    Article  MathSciNet  Google Scholar 

  8. R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D, 63:410–423, 1993.

    Article  MATH  Google Scholar 

  9. A. Karma. Phase-field model of eutectic growth. Phys. Rev. E, 49:2245–2250, 1994.

    Article  Google Scholar 

  10. J.A. Warren and W.J. Boettinger. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field model. Acta Metall. Mater., 43(2):689–703, 1995.

    Article  Google Scholar 

  11. L.Q. Chen. Phase-field models for microstructure evolutions. Annual Rev. Mater. Res., 32:163–194, 2002.

    Article  Google Scholar 

  12. A. Schmidt. Computation of three dimensional dendrites with finite elements. J. Comput. Phys., 125(2):293–312, 1996.

    Article  MATH  Google Scholar 

  13. N. Provatas, N. Goldenfeld, and J. Dantzig. Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys., 148(1):265–290, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Burman and M. Picasso. Anisotropic, adaptive finite elements for the computation of a solutal dendrite. Interfaces Free Bound., 5(2):103–127, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Burman, A. Jacot, and M. Picasso. Adaptive finite elements with high aspect ratio for the computation of coalescence using a phase-field model. J. Comput. Phys., 195(1):153–174, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Ni and C. Beckermann. A volume-averaged 2-phase model for transport phenomena during solidification. Metall. Trans. B, 22(3):349–361, 1991.

    Article  Google Scholar 

  17. C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong. Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys., 154(2):468–496, 1999.

    Article  MATH  Google Scholar 

  18. B. Nestler, A.A. Wheeler, L. Ratke, and C. Stöcker. Phase-field model for solidification of a monotectic alloy with convection. Phys. D, 141(1–2):133–154, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.H. Jeong, N. Goldenfeld, and J. Dantzig. Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E, 64(4):041602, 2001.

    Article  Google Scholar 

  20. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma. Phase-field simulation of solidification. Annu. Rev. Mater. Res., 32:163–194, 2002.

    Article  Google Scholar 

  21. D.M. Anderson, G.B. McFadden, and A.A. Wheeler. A phase-field model of solidification with convection. Phys. D, 135(1–2):175–194, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  22. D.M. Anderson, G.B. McFadden, and A.A. Wheeler. A phase-field model with convection: sharp-interface asymptotics. Phys. D, 151(2–4):305–331, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.C. Heinrich and D.R. Poirier. Convection modeling in directional solidification. C. R. Mecanique, 332:429–445, 2004.

    Article  MATH  Google Scholar 

  24. M. Griebel, W. Merz, and T. Neunhoeffer. Mathematical modeling and numerical simulation of freezing processes of a supercooled melt under consideration of density changes. Comp. Vis. Sci., 1(4):201–219, 1999.

    Article  MATH  Google Scholar 

  25. Y. Sun and C. Beckermann. Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Phys. D, 198(3–4):281–308, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Burman and J. Rappaz. Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci., 26(13):1137–1160, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Picasso. Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Comm. Numer. Methods Engrg., 19(1):13–23, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Picasso. An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput., 24(4):1328–1355 (electronic), 2003.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Picasso. An adaptive algorithm for the stokes problem using continuous, piecewise linear stabilized finite elements and meshes with high aspect ratio. Appl. Numer. Math., 54(3–4):470–490, 2005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Narski, J., Picasso, M. (2006). Adaptive Finite Elements with High Aspect Ratio for Dendritic Growth of a Binary Alloy Including Fluid Flow Induced by Shrinkage. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds) Free Boundary Problems. International Series of Numerical Mathematics, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7719-9_32

Download citation

Publish with us

Policies and ethics