
106 

Unlearning in Feed-Forward Multi-Nets 

L. Spaanenburg * 
*Rijksuniversiteit Groningen, Dept. of Mathematics and Computing Science, P.O. Box 800, NL-9700 A V 

Groningen The Netherlands 

Abstract 
Multi-nets promise an improved performance over monolithic 
neural networks by virtue of their distributed implementation. 
Modular neural networks are multi-nets based on an judicious 
assembly of functionally different parts. This can be viewed 
as again a monolithic network, but with more complex 
neurons (the neural modules). Therefore they will share the 
same learning problems, notably the unlearning effect. In this 
paper we will look more closely into the reasons for 
unlearning and discuss how this can be applied to detect 
novelties. 

1 Introduction 

Multi-nets are combinations of neural networks [1]. 
Different names are used depending on the nature of 
the combination. Ensemble networks are based on a 
redundant collection. Each part gives more or less the 
solution; together they give the best. In hierarchical 
networks, partial solutions are structurally combined in 
a "part-of' fashion. The partial solutions are not 
necessary redundant but a degree of overlap to ensure 
continuity is well advised. When the combination is of 
a different nature (child/parent, co-operation, 
supervision), the notion of modular network is used [2]. 

Multi-nets are of growing interest, as the impact of 
redundancy is believed to make them more accurate 
than single-nets. Moreover, multi-nets can be easier to 
understand and to modify. The current practice in 
ensemble networks confirms this expectation. Here, the 
various solutions to the problem are trained 
independently, then frozen and subsequently combined 
in a voting arrangement. For modular networks in 
general, the use of frozen parts is less acceptable and 
the assembly becomes more of a problem. 

The monolithic neural network is a combination of 
neurons with a characteristic transfer function. This 
function can be explicitly imposed or locally created 
from a small sub-network. For instance, a sub-network 
of neurons with linear transfer can behave as a single 
neuron with a sigmoid transfer. In this sense, the 
monolithic neural network is already a modular one in 
disguise and one may therefore expect that the learning 
problems will be the same. As it has been noted that 
with growing problem size the monolithic network has 
increasing difficulty to learn with sufficient quality [3], 
one may expect no better from a multi-net. 

In both cases, the learning process suffers from the 

entropy in the example set, which in individual cases 
can lead to catastrophic forgetting [4] (also called 
interference or cancellation). This can only be resolved 
by giving suitable general directions, as (a) by data 
preprocessing, (b) by inclusion of pre-knowledge or (c) 
by domain structuring. The claim that for monolithic 
networks more than 80% of the development time is 
spent on data preprocessing supports this [5]. 

Modular neural networks address this learning problem 
by structuring the multi-net into modules, of which 
some will merely perform functions that are previously 
part of the data preprocessing. Such modules can often 
have a strict mathematical content; in this case the 
multi-net is also called heterogeneous. With suitable 
initialization, the multi-net shows the structure of the 
domain problem. The major benefit is to the designer, 
who wants to prototype his solution directly from the 
raw input data. This enables an immediate view on the 
problem and its solution by recalling the multi-net. 

Apparently modular neural networks may have an 
improved performance, if the data interference can be 
solved by a proper transformation of the input data. The 
further difference with monolithic networks is the 
facility to segment the domain solution, again reducing 
the chance on the appearance of learning problems. In a 
companion paper we discuss how a modular network 
can be suitably trained. Here, the focus is rather on how 
unlearning can be utilized as a detection mechanism for 
novelties. 

After an introduction to the nature of data interference, 
we will illustrate its operation by analyzing the 
performance of the ill-famed Exclusive-OR [6]. This 
small and seemingly trivial network displays clearly all 
the negative effects of data interference without 
cluttering by other phenomena. Subsequently we move 
on to techniques to make the network explicitly 
vulnerable to external aberrations and demonstrate the 
use of unlearning in the detection of novelties. 

2 Catastrophic Forgetting 

Symmetries in the operation of neural learning are 
usually beneficial as the randomized selection of 
weights together with the random presentation of 
examples provide enough leeway to eliminate the 
detrimental side-effects. However, in function 

V. Krková et al. (eds.), Artificial Neural Nets and Genetic Algorithms
© Springer-Verlag Wien 2001



approximation, example randomization brings in the 
longest-ruin effect: in the long run enough symmetry is 
available in the presentation set that unlearning can not 
be excluded beforehand. 

First of all, symmetry can already be present in the 
example set. When for instance the sine-wave y=sin(x) 
is trained, one example may force the result YI to be 
caused from Xl in the first quadrant, while another sees 
YI to be caused from X2 in the second quadrant. The 
mixed presentation of such signals will cause internal 
interference as sin(x) = sin(1t-x), leading mostly to 
increased learning time or even erroneous results. 

y y 

y 

x x 

IXI I Xz 
I I 

Figure 1 Training a half sine wave. 

A second symmetry may come from the architecture of 
the neural net, more specifically from the 
discriminatory function that creates the axon value. A 
number of discriminatory functions have been posed in 
the past, of which especially the zero-centered sigmoid 

f(x)=(l-e-x)/(l+e-x ) appears to make the network 
very vulnerable for symmetry effects. In [4], this 
discriminatory function has been exploited to make the 
detrimental occurrence of data interference due to 
symmetry effects most visible. 

The architecture of the fully connected feed-forward 
net brings a third symmetry as any hidden neuron can 
be trained to a specific feature. Assuming all required 
features to be present, the trained function is invariant 
to the binding of features to hidden neurons. In other 

n m 

words, whereas y = /(2. wkj (f(2. WjiX j ») , any 
k=O j=O 

structural ordering of the m hidden neurons will do. 

Connected to the above hidden invariance is the 
observation that the function of the feed-forward 
network is based on building solutions from the hidden 
features. Such hidden features are created in the first 
layer(s) of the network and do not have to be unique as 
long as the composition in the output layer provides the 
correct result. It has been indicated, that from the 
architecture of the feed-forward net a number of 
symmetries in the error landscape result that each will 
provide the desired response on the output [8]. On the 
other hand, the network may migrate during learning 
from the one set of hidden features to the other. 

107 

The data interference seems caused by indeterminacy 
and therefore repairable by adding input features. 
However, the conventional random initialization may 
often lead to internal indeterminacy which is harder to 
diagnose and may be facilitated by the many 
alternatives offered by structural symmetry. The impact 
of structural alternatives may be offset by realization 
choices. In [1] it has been shown that the three 
symmetries will in combination have a severe 
deleterious effect on the outcome of neural training. 

Modules can be used to disperse symmetry in a local 
and manageable structure. Such symmetries can occur 
on any level of packaging and will therefore complicate 
the discussion on modular networks. For the earlier 
mentioned sine-wave problem, there are a number of 
suitable, goniometric solutions. The simplest one is to 
model one quadrant only and to combine this with a 
phase indicator to model the full signal. However, the 
potential for unlearning can still be set off by the error 
disruption caused by module assembly. 

3 The XOR Multi-Net 
To illustrate the way that data interference leads to 
unlearning in a modular setting we discuss here a 
simple experiment, wherein the XOR function is 
trained directly on a feed-forward network. Though the 
training is feasible, it is also extremely slow and not 
guaranteed to terminate. On the other hand, training the 
AND and the OR function is relatively easy. Then, 
connecting the AND- and OR-modules over a single 
additional neuron, followed by training for the EXOR, 
is also relatively easy. 

In a way, the difference between the monolithic and the 
modular approach can be viewed as an initialization 
problem: by separating in front the two symmetrical 
parts of the function, the data interference is taken out 
of the learning. The way we have trained the connected 
network has been straightforward, as we are able to 
correctly insert the knowledge in the right place. We 
start from a trained AND- and OR-function and merge 
them into an overall modular Perceptron by feeding 
their outputs into a new 2-level module. 

When we perform learning on this structure, there 
appears to go a disruption through the network in the 
early phases of learning for reason of the sudden 
contact between pre-trained and "empty" parts. This 
makes that initially the function output reflects the 
empty part, while the back-propagated error is 
intensified when it returns at the interface with the 
trained parts (Figure 2). Fortunately this disruption 
soon dies out. We see no difference in the error curve 
whether the interconnections between the pre-trained 
functions and the merger are fixed or trainable. 



108 

As reference, we have also plotted the learning curve 
for the monolithic XOR with 4 hidden neurons. Though 
a 2-2-1 solution is feasible, a 2-3-1 solution is more 
comfortable to reach by training while 2-4-1 seems 
optimal. One may assume that the modular construction 
of a 2-hidden OR and a 2-hidden AND may be 
equivalent to a 4-hidden monolithic construction, as 
found earlier to give the optimal response time. 
Apparently, this is not the case. The learning curve for 
the 2-4-1 XOR comes only down at around 430 epochs. 

0,16 

... 0,12 
~ ... 
" OJ) 

.:: 
<= .; 
t: 

0,08 

0,04 

.. 
\ 
\ ... .. 

-+-merge 
___ connect 

---*- xor2-4-1 

...... ............... 
° +-.-.-.-.-.-.-.-.--.-._erP_oc,h~s 

10 30 50 70 90 110 130 

Figure 2 Training with modular inserted knowledge 

On closer look, the weight settings have shifted when 
learning the assembly with trainable interconnect 
(Figure 3). Though the overall performance does not 
seem to be affected, the modules are not functionally 
optimal anymore. For the individual input responses, 
the change is sometimes for the better, but regretfully 
the opposite may also be true. It appears that the 
adaptation is consistent in one direction for those 
vectors 0='10' and 2='01'), that are redundant for the 
overall function, and disruptive for the ones (0='00' and 
especially 3=' 11 '), that are internally conflicting. 

0,05 -+- and 
_merge 

0,04 
... .,; g 0,03 IY' 
Q) 

/ 
(II 

0,02 / 0 
Q) / ... 

0,01 / 
inputvectors 

° 
° 3 2 

Figure 3 How training of the overall XOR influences the 
modular parts. 

The above example has shown that assembling pre­
trained neural modules into a more complex function 
has two effects. The first is the error disruption caused 

by the contact between the learned and the unlearned 
part; the second is the personalization of the modules to 
the benefit of the overall function. Both effects are 
potentially harmful to the integrity of the assembly 
network and the stored knowledge may disappear [9]. 
Usually this is attacked by considerably lowering the 
learning rate, leading to lengthy training [10]. 

The easy alternative seems to assemble only trained 
networks. In our example, this involves the trained 
AND- and OR-modules to combine with an XOR­
module that was already learned from and(x,y) and 
nor(x,y) inputs rather than (x,y). However, as training 
will not be totally perfect, there will remain an error 
disruption on the interface of the modules. Further it 
requires complex operations on the data file to produce 
the partial examples fit for the merged network. The 
evident success of this approach for real-life problems 
(for instance [11]) leads to the question whether the 
modules can be trained simultaneously? 

4 Unlearning in Novelty Detection 

The desired handling of modular assembly is that the 
new, unlearned part is first brought into unison with the 
included knowledge and later on allowed to personalize 
the module content in such a way that the initial 
knowledge is always retained and never overruled. In 
other words, the back-propagation of an error needs to 
have a different effect on inserted knowledge as 
compared to fresh ignorance. 

The proposition is therefore to have a single learning 
rate, which is globally effective, and an error­
dependent derivation, effective per module. This is a 
different adaptive behavior than published in [12] 
where the rate is gradually lowered at the end of 
learning to improve convergence. 

To have a quantitative feeling for the impact of such 
local learning rates we have first experimented with 
degrees of error back-propagation on the modular 
interfaces for the modular EXOR solution. As stated in 
the discussion of Figure 2, the overall performance will 
not be effected but the functional correctness of the 
parts is. Hence in Figure 4 we show the functional 
correctness of the AND-module after using it in a 
modular EXOR. 

It appears that the amount by which the error is passed 
back to the learned modules leaves a permanent effect 
on the initialized knowledge. Even a minimal back 
propagation sets the destruction process in motion. This 
can be explained from the observation, that the output 
reference is lacking for the AND module and therefore 
even a small error will be used for weight adaptation. 



.... 
0 .... .... 
Q) 

Iii 
() 
Q) .... 

0,06 

0,05 

0,04 

0,03 

0,02 
I 

0,01 

I 

I 

I 

. + -0% 

-~50% 

in putvectors ° +-~~-.-----.------.-----, 
° 1 3 2 

Figure 4 How training of the overall XOR with local 
learning rates influences the pre-trained AND part. 

Where in a companion paper [7] we have continued at 
this point to find the proper way to learn, the interest 
lies here in the proper way to unlearn. Apparently, the 
knowledge within the AND module is affected during 
the training in a degree, that may cause permanent 
harm. In Figure 4 there is still room to recover, but at a 
potentially prolonged learning. 

Barakova has already concluded for a range of 9 
complex signals [4], that increasing the amount of data 
interference in the training set has at first little effect. 
However, learning time increases steeply when the 
amount crosses a critical value: the unlearning 
threshold. This has been largely explained from the 
indecisiveness of the learning process. 

We conclude here, that even a correct assembly will be 
vulnerable during post-training. Due to the existing 
initialization of the parts, the unlearning threshold will 
have shifted but will still be there. As a consequence, 
novelties and abnormalities that are large enough to 
bring the network (or one of its parts) across the 
threshold will still cause unlearning. 

This makes the neural network very suitable for 
abnormality detection. A neural network trained on 
existing examples will react on new but different 
examples by a noticeable prolonged period of post­
training. Exceeding the expected training time can be 
easily measured. 

In [13], a comparison is made of several classical and 
neural fault detectors for a number of signals. It appears 
that the classical techniques handle random 
disturbances well, but have a problem with chronic 
disturbances. On the other hand, a neural network has a 
degree of robustness for random disturbances, while 
they react quickly on structural changes: the chronic 
disturbances. 

Some examples are reproduced in Figure 5. They show 

109 

the learning time in case of five typical noise 
disturbance: (a) small uniform, (b) medium uniform, 
(c) block wave, and (d) saw-tooth . 

gauss-l 

gauss-2 

I_ traintimel 
block 

saw-tooth 

o 10 20 30 

Figure 5 Prolonged training due to disturbance 

References 

[1] Sharkey, AJ.C. (ed.): Combining artificial neural nets, 
Heidelberg: Springer 1999. 

[2] Caelli, T., Guan, L., and Wan, W.: Modularity in Neural 
Computing, Proc. of the IEEE 87, pp. 1497-1518 (1999. 

[3] Macready, W.G., Siapas, A.G. and Kauffman, S.A.: 
Criticality and parallelism in combinatorial optimization, 
Science 271, pp. 56-59 (1996). 

[4] Barakova, E.I.: Learning Reliability: a study on 
indecisiveness in sample selection, Ph.D. thesis 
(Groningen University, Groningen) 1999. 

[5] Schuermann, B.: Applications and Perspectives of 
Artificial Neural Networks, VDI Berichte 1526, pp. 1-14 
(2000). 

[6] Sprinkhuizen-Kuyper, I.G., and Boers, EJ.W.: A local 
minimum for the 2-3-1 XOR network, IEEE Tr. on 
Neural Networks 10, pp. 968-971, (1999). 

[7] Venema, R.S., and Spaanenburg, L.: Learning feed­
forward networks, this proceeding. 

[8] Saad, D.: Explicit symmetries and the capacity of multi­
layer neural networks, Journal Physics A 27, pp. 2719-
2734 (1994). 

[9] Spaanenburg, L., Jansen, W.J., and Nijhuis, J.A.G.: Over 
multiple rule-blocks to modular nets, Proceedings 
EUROMICRO'97, pp. 698-705 (1997). 

[10] Yamauchi, K., Yamaguchi, Y., and Ishii, N.: Incremental 
learning methods with retrieving of interfered patterns, 
IEEE Tr. on Neural Networks 10, pp. 1351-1365 (1999). 

[11] TerBrugge, M.H., Nijhuis, J.A.G., and Spaanenburg, L.: 
License-Plate Recognition, pp. 263-296, in: Jain, L.C., 
and Lazzarini, B.: Intelligent Te~hniques in Character 
Recognition: Practical Applications, CRC Press 1999. 

[12] Yu, X.L., Chen, G.K.c., and Cheng, S.: Dynamic 
learning rate optimization of the back-propagation 
Algorithm, IEEE Tr. on Neural Networks 6, pp. 669-677 
(1995). 

[13] VanVee1en, M., Nijhuis, J.A.G. and Spaanenburg, L.: 
Process fault detection through quantitative analysis of 
learning in neural networks, Proceedings ProRISC'2000, 
pp. 557-565 (2000). 


