Skip to main content

Drops, Jets and Bubbles

  • Conference paper

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 391))

Abstract

Drops, jets and bubbles occur in many different technological and scientifically relevant situations and, thus, have been the subject of a great deal of theoretical and experimental work. In the six lectures presented here, I have focused on the equilibria and dynamics of captive drops (or liquid bridges), the thermocapillary migration of drops. In the last lecture I give a brief introduction to the related problem of contact line motion and dynamic contact angles. (Contact line and angle behavior is an important aspect of captive, sessile and pendant drop dynamics.) In Chapter 1, the basic equations governing bridge dynamics and equilibria are introduced and a method for determining the stability of axisymmetric equilibrium shapes is outlined. Selected results for the stability of bridges subject to gravity and isorotation are discussed. In Chapter 2 we consider 1D models of liquid bridge oscillation. These models are based on models used to describe axisymmetric jets and have been adapted for modeling liquid bridge dynamics. In Chapter 3, 2D and 3D liquid bridge oscillations are examined and the nonlinear behavior of bridges undergoing large amplitude oscillations is discussed. It is shown that, for nonlinear oscillations, liquid bridges behave like a soft spring. In Chapter 4 we consider different models of the breaking of jets, pendant drops and liquid bridges. In Chapter 5 we briefly analyze the Young-Goldstein-Block model of the thermocapillary migration of bubbles. In Chapter 6, we introduce and discuss recent experimental and theoretical work concerning dynamic contact angles and highlight the complexity of the behavior of moving contact lines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Segel, L.A., Mathematics applied to continuum mechanics,(1977) Macmillan.

    Google Scholar 

  2. Edwards, D.A., Brenner, H. and Wasan, D.T., Interfacial transport processes and Rheology, (1991)Butterworths.

    Google Scholar 

  3. Myshkis, A.D., Babskii, V.G, Kopachevskii, N.D. Slobozhanin, L.A., Tyuptsov, A.D., Low Gravity Fluid Mechanics (1987) Springer Verlag, Berlin.

    Book  Google Scholar 

  4. Struik, D., Differential Geometry,(1961)Addison-Wellsley.

    Google Scholar 

  5. Slobozhanin, L.A., Perales, J.M., “Stability of liquid bridges between equal disks in an axial gravity field”, Phys. Fluids A 5 (1993) 1305.

    Google Scholar 

  6. Slobozhanin,L.A., Perales, J.M., “Stability of an isorotating liquid bridge between equal disks under zero-gravity conditions”, Phys. Fluids 8 (1996), 2307.

    Google Scholar 

  7. Slobozhanin, L.A., Alexander, J.I.D., Resnick, A. H., Bifurcation of the equilibrium states of a weightless liquid bridge, Phys. Fluids 9 (1997) 1893–1905.

    Article  ADS  MathSciNet  Google Scholar 

  8. Slobozhanin, L.A., Alexander, J.I.D., Stability of an isorotating liquid bridge in an axial gravity field, Phys. Fluids 9 (1996), 1880–1892.

    Article  ADS  MathSciNet  Google Scholar 

  9. Bezdenejnykh, N., Meseguer, J., Perales, J.M., Experimental analysis of stability limits of capillary liquid bridges, Phys. Fluids A 4, (1996) 677.

    Article  ADS  Google Scholar 

  10. B. J. Lowry and P. H. Steen, “Capillary surfaces: stability from families of equilibria with application to the liquid bridge”, Proc. R. Soc. London A 449 (1995) 411–439.

    Article  ADS  MATH  Google Scholar 

  11. Meseguer, J., The breaking of axisymmetric slender liquid bridges, J. Fluid Mech. 130 (1983) 123–151.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Meseguer, J., Axisymmetric long liquid bridges in a time-dependent microgravity field, Appl. Microgravity Tech. 1 (1988) 136–141.

    Google Scholar 

  13. Zhang, Y., Alexander, J. I. D., Sensitivity of liquid bridges subject to axial residual acceleration, Phys. Fluids A 2 (1990) 1966–1974.

    Article  ADS  MATH  Google Scholar 

  14. Lee, H.C., Drop formation in a liquid jet, IBM J. Res. Dev., (1974) 18, 364–369.

    Article  MATH  Google Scholar 

  15. Pimbley, W.T., Drop formation from a liquid jet: A linear one-dimensional analysis considered as a boundary value problem, IBM J. Res. Dev., (1976) 20 148–156.

    Article  MATH  Google Scholar 

  16. Zhang, Y., Alexander, J. I. D., Sensitivity of liquid bridges subject to axial residual acceleration, Phys. Fluids A 2 (1990) 1966–1974.

    Article  ADS  MATH  Google Scholar 

  17. Meseguer, J., Axisymmetric long liquid bridges in a time-dependent microgravity field, Appl. Microgravity Tech. 1 (1988) 136–141.

    Google Scholar 

  18. Nicolas, J., Frequency response of axisymmetric liquid bridges to an oscillatory microgravity field, Microgr. Sci. Technol. 4 (1991) 188–190.

    Google Scholar 

  19. B. J. Ennis, J. Li, G. Tardos, and R. Pfeiffer, The influence of viscosity on the strength of an axially strained pendular bridge, Chem. Eng. Sci., 45, 3071–3088 (1990).

    Article  Google Scholar 

  20. V. P. Mehrota, and K.V.S. Sastry, Pendular bond strength between unequal-sized spherical particles, Powder tech., 25, 203–214 (1980).

    Article  Google Scholar 

  21. D. N. Mazzone, G.I. Tardos, and R. Pfeffer, The behavior of bridges between two relatively moving particles, Powder Tech., 51, 71–83 (1987).

    Article  Google Scholar 

  22. L. A. Newhouse, and C. Pozrikidis, The capillary instability of annular layers and thin liquid threads, J. Fluid Mech., 242, 193–209 (1992).

    Article  ADS  Google Scholar 

  23. Tsamopolous, J., Chen, T., Borkar, A., Viscous oscillations of capillary bridges, J. Fluid Mechanics 235 (1992) 579–609.

    Article  ADS  Google Scholar 

  24. Peyret, R., Taylor, T.D., Computational Methods for Fluid Flow, (1983) Springer. [3.3] ISML Math/Library, FORTRAN subroutines for mathematical applications, (1991) IMSL(support @ imsl.com).

    Google Scholar 

  25. Thomas, P.D., Brown, R.A., LU decomposition of matrices with augmented dense constraints, Int. J. Num. Meth. Eng. 24 (1987) 1451.

    Google Scholar 

  26. Higueras, M., Nicolas, J., Vega J.M., Linear oscillations of weakly dissipative axisymmetric liquid bridges, Phys. Fluids A 6 (1994) 438–450.

    Article  ADS  Google Scholar 

  27. Sanz, A., Lôpez-Diez, J., Non-axisymmetric oscillations of liquid bridges, J. Fluid Mech. 205 (1989) 503–521.

    Article  ADS  Google Scholar 

  28. Zhang, Y.-Q., and Alexander, J.I.D., The sensitivity of a nonisothermal liquid bridge to residual acceleration, Microgr. Sci. Tech. IV (1991) 128–129; Proceedings of the IUTAM Symposium on Microgravity Fluid Mechanics, Bremen, 1991, ed H. Rath.

    Google Scholar 

  29. Chen, T., Tsamopolous, J., Nonlinear dynamics of capillary bridges: Theory, J. Fluid Mech. 255 (1993) 373–409.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Shulkes, R.M.S.M., Nonlinear dynamics of liquid columns: A comparative study, Phys. Fluids A 5 (1993) 2121–2130.

    Article  ADS  Google Scholar 

  31. Zhang, Y., and Alexander, J.I.D., unpublished research (1994).

    Google Scholar 

  32. Eidel, W., Weak nonlinear axisymmetric oscillations of an inviscid liquid column with anchored free surface under zero gravity, Microgr. Sci. Technol. 7 (994) 6.

    Google Scholar 

  33. Eidel, W., Weak nonlinear axisymmetric oscillations of an inviscid liquid column with anchored free surface under zero gravity, Microgr. Sci. Technol. 7 (1994) 6.

    ADS  Google Scholar 

  34. Meseguer, J., The breaking of axisymmetric slender liquid bridges, J. Fluid Mech. 130 (1983) 123–151.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Eggers, J., Dupont, T.F., Drop formation in a one dimensional approximation of the Navier-Stokes equations, J. Fluid Mech. 262 (1994) 205.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Shulkes, R.M.S.M., Nonlinear dynamics of liquid columns: A comparative study, Phys. Fluids A (1993) 2121–2130.

    Google Scholar 

  37. Alexander, J.I.D., Zhang, Y., unpublished research

    Google Scholar 

  38. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961) Clarendon.

    Google Scholar 

  39. Chaudhary, K.C. and Maxworthy, T., The nonlinear instability of a liquid jet. Part 2, A. Rev. Fluid Mech. 11 (1979) 207–228.

    Article  Google Scholar 

  40. Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions (1972) Dover.

    Google Scholar 

  41. Shulkes, R.M.S.M., The evolution of capillary fountains, J. Fluid Mech. 261 (1994) 223–252.

    Article  ADS  MathSciNet  Google Scholar 

  42. Hirt, C.W., Nichols, B.R., Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1981) 201–225.

    Article  ADS  MATH  Google Scholar 

  43. Lafaurie, B, Nardone, C., Scardovelli, R., Zaleski, S. and Zanetti, G, Modelling merging and fragmenting in multi-phase flows with SURFER, J. Comp. Phys. 113 (1994) 134–147.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Brackbill, J.U., Kothe, D.B., Zemach, C., A continuum method for modelling surface tension, J. Comp. Phys. 113 (1994) 134–147.

    Article  Google Scholar 

  45. Jun, L., Spalding, D.B., Numerical simulation of flows with moving interfaces, PCH PhysicoChemical Hydrodynamics, 10 (1988) 625–637.

    Google Scholar 

  46. Chakravarty, S.R., A new class of high accuracy TVD schemes for hyperbolic conservation laws, Proc. AIAA 23rd Aerospace Sciences Meeting, (1985).

    Google Scholar 

  47. Patankar, S.V. Numerical Heat Transfer and Fluid Flow,(1980) Hemisphere.

    Google Scholar 

  48. Young, N.O., Goldstein, J.S., Block, M.J., “The motion of bubbles in a vertical temperature gradient”, J. F.M. 6 (1959) 350–356.

    Article  MATH  Google Scholar 

  49. Wozniak, G., Siekmann, J., Srulijes, J., “Thermocapillary bubble and drop dynamics under reduced gravity-survey and prospects”, Zeit. Flugwissen. Weltraumforsch. 12 (1988) 137.

    Google Scholar 

  50. Subramanian, R.S., The motion of bubbles and drops in a reduced gravity environment.“ in Transport Processes in Bubbles Drops and Particles, Chabra, R. and De Kee, D., eds., ( Hemisphere, New York, 1922 ) pp. 1–41.

    Google Scholar 

  51. Anderson, J.L., “Droplet interactions in thermocapillary motion”, Int. J. Multiphase Flow, 11 (1985) 813.

    Google Scholar 

  52. Meyyapan, M., Wilcox, W.R., Subramanian, R.S., “The slow axisymmetric motion of two bubbles in a thermal gradient” J. Colloid Interface Sci. 94 (1984) 243.

    Article  Google Scholar 

  53. Wang; Y. Mauri, R., Acrivos, A., J.F.M. 261 (1994) 47.

    Google Scholar 

  54. Felderhof, B.U., “Thermocapillary mobility of a suspension of droplets in a fluid” Phys. Fluids 8 (1996) 1705–1714.

    Google Scholar 

  55. Landau, L.D., Lifshitz, Fluid Mechanics, Course of Theoretical Physics 6 ( Pergamon, Oxford, 1959 ).

    Google Scholar 

  56. Men-it, R.M., Subramanian, R.S., “The migration of isolated gas bubbles in a vertical temperature gradient”, J. Colloid and Interface Sci. 125 (1988) 333.

    Google Scholar 

  57. Dill, L.H., “on the thermocapillary migration of a growing or shrinking drop”, J. Colloid and Interface Sci. 146 (1991) 533.

    Google Scholar 

  58. Balasubramanian, R., Lacy, C.E., Wozniak, G., Subramanian, R.S., “Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity”, Phys. Fluids 8 (1996) 872–880.

    Article  ADS  Google Scholar 

  59. Myshkis, A.D., Babskii, V.G, Kopachevskii, N.D. Slobozhanin, L.A., Tyuptsov, A.D., Low Gravity Fluid Mechanics (1987) Springer Verlag, Berlin.

    Book  Google Scholar 

  60. Hocking, L.M., A moving fluid interface. Part 2, the removal of the force singularity by a slip flow, J.F.M. 79 (1977) 20–229.

    Google Scholar 

  61. Dussan V, E.B., The moving contact line: the slip boundary condition, J.F.M 77 (1976) 665.

    Article  MATH  Google Scholar 

  62. Durbin, P.A., Considerations on the moving contact line singularity with application to frictial drag on a slender drop, J.F.M. 197 (1988) 169.

    Google Scholar 

  63. Dussan V, E.B., Ramé, E., Garoff, S., On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation, J.F.M 230 (1991) 97–116.

    Google Scholar 

  64. Miksis, M., Davis, S.H., Slip over rough and coated surfaces, J.F.M. 273 (1994) 125–139.

    Article  MATH  Google Scholar 

  65. Haley, P.J. and Miksis, M.J., The effect of the contact line on droplet spreading, J.F.M. 223 (1991) 57–81.

    Article  MATH  MathSciNet  Google Scholar 

  66. Koplick, J., Banavar, J.R., Willemsen, J.F., Molecular dynamics of Poiseuille flow and moving contact lines, Phys. Rev. Lett. 60 (1988) 1282.

    Google Scholar 

  67. Thompson, P., Robbins, M.O., Simulations of contact-line motion: slip and dynamic contact angle, Phys. Rev. Lett. 63 (1989) 766

    Article  ADS  Google Scholar 

  68. Ramé, E., Garoff, S., Microscopic and macroscopic dynamic interface shapes and the interpretation of dynamic contact angles, J. Colloid Interface Sci. 177 (1996) 234–244.

    Article  Google Scholar 

  69. Chen, Q., Ramé, E., Garoff, S., The breakdown of asymptotic models of liquid spreading at increasing capillary number, Phys. Fluids 7 (1995) 2631–2639.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Alexander, J.I.D. (1998). Drops, Jets and Bubbles. In: Kuhlmann, H.C., Rath, HJ. (eds) Free Surface Flows. International Centre for Mechanical Sciences, vol 391. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2598-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2598-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83140-3

  • Online ISBN: 978-3-7091-2598-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics