Skip to main content

Pulmonalvaskuläre und sonstige Veränderungen unter Hypoxie

  • Chapter
  • First Online:
  • 5072 Accesses

Zusammenfassung

Unter akuten Höhen-/Hypoxiebedingungen sind weder Untrainierte noch Trainierte von einer pulmonalarteriellen Drucksteigerung infolge pulmonaler Vasokontriktion („hypoxic pulmonary vascular response“, HPVR) ausgenommen. Die HPVR stellt eine autonome Leistung der pulmonalen Strombahn dar, die auch noch an autoptischen Lungenpräparaten nachweisbar ist und völlig unabhängig vom vegetativen Nervensystem abläuft. Mit großen individuellen Unterschieden verdoppeln Gesunde ihren pulmonalarteriellen Druck in etwa 4000 m Höhe, wobei es große individuelle Unterschiede gibt. Diese physiologische hypoxische pulmonalarterielle Hypertonie (HPAH) dient der Homogenisierung der Lungenperfusion (Angleichung der Perfusions- und Ventilationsverhältnisse sowie Abnahme funktioneller Shunts) und optimiert innerhalb bestimmter Druckgrenzen die Sauerstoffaufnahme. Die HPAH ist nach Rückkehr auf Normalhöhe kurzfristig reversibel, sofern noch kein Remodeling der Pulmonalgefäße stattgefunden hat.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Anand IS, Chandrashekhar Y (1992) Subacute mountain sickness syndromes: role of pulmonary hypertension. In: Sutton JR, Coates G, Houston CS (Hrsg) Hypoxia and Mountain Medicine, Burlington VT: Queen City Printers, S 241

    Google Scholar 

  • Anholm JD (1999) Radiographic evidence of interstitial pulmonary edema after exercise at altitude. J Appl Physiol 86: 503–508

    CAS  PubMed  Google Scholar 

  • Bernardi L, Schneider A, Pomidori L, Paolucci E, Cogo A (2006) Hypoxic ventilatory response in successful extreme altitude climbers. Eur Respir J 27: 165–171

    Article  CAS  PubMed  Google Scholar 

  • Burtscher M (2010): Effects of altitude exposure: which altitude can be tolerated? Wien Med Wochenschr 160 (13–14): 362–371

    Article  PubMed  Google Scholar 

  • Brutsaert TD (2008) Do high-altitude natives have enhanced exercise performance at altitude? Appl Physiol Nutr Metab 33: 562–592

    Article  Google Scholar 

  • Buskirk ER, Kollas J, Akers RF, Prokop EK, Reategui EP (1967) Maximum performance at altitude and return from altitude in conditioned runners. J Appl Physiol 23: 259–266

    CAS  PubMed  Google Scholar 

  • Calbet JA, Boushel R, Radegan G (2003) Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 -content? Am J Physiol Regul Integr Comp Physiol 284: R304–316

    Article  CAS  PubMed  Google Scholar 

  • Domej W, Schwaberger G, Pietsch C, Guger C (2007) High altitude pulmonary hypertension and vascular remodeling. In: Schobersberger W, Domej W, Sumann G, Berghold F (Hrsg) Alpinmedizinisches Jahrbuch 10, Österreichische Gesellschaft für Alpin- und Höhenmedizin, Innsbruck, S 29–54, ISBN 978-3-9501312-7–7

    Google Scholar 

  • Erzurum SC, Ghosh S, Janocha AJ (2007) Higher blood flow and circulating NO products offset high-altitude hypoxia among Tibetans. In: Proc Natl Acad Sci USA 104, S 17593–17598

    Google Scholar 

  • Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12: 301–320

    Article  Google Scholar 

  • Green HJ, Sutton JR, Cymerman A, Sutton JR (1989) Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66: 2454–2461

    CAS  PubMed  Google Scholar 

  • Groves BM, Reeves JT, Sutton JR, Wagner PD, Cymerman A, Malconian MK. Rock PB, Young PM, Houston CS (1987) Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol 63: 521–530

    CAS  PubMed  Google Scholar 

  • Haab P, Held DR, Ernst H, Farhi LE (1969) Ventilation-perfusion relationships during high-altitude adaptation. J Appl Physiol 26: 77–81

    CAS  PubMed  Google Scholar 

  • Howald H, Hoppeler H (2003) Performing at extreme altitude: muscle cellular and subcellular adaptation. Eur J Appl Physiol 90: 360–364

    Article  PubMed  Google Scholar 

  • Johnson B, Babcock M., Suman O, Dempsey J (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol Lond 460: 385–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Juel C, Lundby C, Sander M (2003) Human skeletal muscle and erythrocyte proteins involved in acid-base homeostasis: adaptations to chronic hypoxia. J Physiol 548: 639–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Yang L, Shen J, Wang C, Jiang Z (2007) The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase ½ phosphorylation. Anesth Analg 105(4): 1034–1041

    Article  CAS  PubMed  Google Scholar 

  • MacDougall JD, Green HJ (1991) Operation Everest II: structural adaptations in skeletal muscle in response to extreme simulated altitude. Acta Physiol Scand 142: 421–427

    Article  CAS  PubMed  Google Scholar 

  • Penaloza D, Arias-Stella J (2007) The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation 115(9): 1132–1146

    Article  PubMed  Google Scholar 

  • Sierra-Johnson J, Romero-Corral A, Somers VK, Johnson BD (2008) Last word on viewpoint: effect of altitude on leptin levels, does it go up or down? J Appl Physiol 105(5): 1691

    Article  PubMed  Google Scholar 

  • Tozzi CA, Poiani GJ, Harangozo AM, Boyd CD, Riley DJ (1989) Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest 84: 1005–1012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wagner PD (2000) Reduced maximal cardiac output at altitude-mechanisms and significance. Respir Physiol 120: 1–11

    Article  CAS  PubMed  Google Scholar 

  • West JB (2000) Human limits for hypoxia. The physiological challenge of climbing Mt. Everest. Ann NY Acad Sci 800:15–27

    Google Scholar 

  • Westerterp-Plantenga MS, Westerterp KR, Rubbens M (1999) Appetite at high-altitude [Operation Everest III (Comex-97)]: a simulated ascent of Mount Everest. J Appl Phsiol 87: 391–399

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Domej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Domej, W., Schwaberger, G. (2015). Pulmonalvaskuläre und sonstige Veränderungen unter Hypoxie. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1833-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1833-7_32

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1832-0

  • Online ISBN: 978-3-7091-1833-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics