Skip to main content

Wachstumsfaktoren unter besonderer Berücksichtigung des muskuloskelettalen Systems

  • Chapter
  • First Online:
Molekulare Sport- und Leistungsphysiologie

Zusammenfassung

Wachstumsfaktoren sind Proteine, agieren als Signalvermittler und können Zellen spezifischer Gewebe auf unterschiedliche Art und Weise in unterschiedliche Richtungen beeinflussen. Sie sind daher u. a. beim Wachstum, der Erhaltung von Geweben sowie bei der Heilung von Verletzungen wichtig. Sie binden an Membranrezeptoren und initiieren teils hochkomplexe Signalwege, wobei sie auf drei verschiedene Arten wirken können: autokrin, parakrin und endokrin. Im vorliegenden Kapitel werden die wichtigsten Wachstumsfaktoren, deren Funktionsweisen und Wirkungen über Signalketten in der Beeinflussung der Gewebetypen Muskulatur, Knochen, Knorpel, Bänder und Sehnen beschrieben. Allerdings muss festgehalten werden, dass viele weitere RCTs notwendig sein werden, um die singuläre oder additive Verwendung von Wachstumsfaktoren in bestimmten regenerativen Phasen derart aufzubereiten, dass sie routinemäßig therapeutisch verwendet werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Lieberman JR et al. (2002) The Role of Growth Factors in the repair of bone. The Journal of Bone & Joint Surg Am. 84-A(6): 1032–44

    Article  Google Scholar 

  2. Molloy T et al. (2003) The Roles of Growth Factors in tendon and ligament healing. Sports Med. 33(5): 381–94

    Article  PubMed  Google Scholar 

  3. Yun YR et al. (2010) Fibroblast Growth Factors: Biology, Function, and Application for Tissue Regeneration. Journal of Tissue Engineering. 1(1): 218142–218142

    Article  CAS  Google Scholar 

  4. Nguyen RT, Borg-Stein J, McInnis K (2011) Applications of Platelet-Rich Plasma in Musculoskeletal and Sports Medicine: An Evidence-Based Approach. Pm&R. 3(3): 226–250

    Article  Google Scholar 

  5. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am. 77(3): 509–28

    Article  CAS  PubMed  Google Scholar 

  6. Rodrigues MT, Reis RL, Gomes ME (2012) Engineering tendon and ligament tissues: present developments towards successful clinical products. J Tissue Eng Regen Med

    Google Scholar 

  7. Strodtbeck F (2001) Physiology of Wound Healing. Newborn and Infant Nursing Review

    Google Scholar 

  8. Kon E et al. (2011) Platelet-rich plasma (PRP) to treat sports injuries: evidence to support its use. Knee Surgery, Sports Traumatology, Arthroscopy. 19(4): 516–527

    Article  PubMed  Google Scholar 

  9. Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle. 1(1): 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ljungqvist A et al. (2008) International Olympic Committee Consensus Statement: Molecular Basis of Connective Tissue and Muscle Injuries in Sport. Clinics in Sports Medicine. 27(1): 231–239

    Article  PubMed  Google Scholar 

  11. Hoppeler H et al. (2011) Molecular mechanisms of muscle plasticity with exercise. Compr Physiol. 1(3): 1383–412

    PubMed  Google Scholar 

  12. Salmon WD Jr., Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med. 49(6): 825–36

    CAS  PubMed  Google Scholar 

  13. Le Roith D (2003) The insulin-like growth factor system. Exp Diabesity Res. 4(4): 205–12

    Article  PubMed  Google Scholar 

  14. Froesch (1985) Actions of insulin-like

    Google Scholar 

  15. Maki RG (2010) Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol. 28(33): 4985–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaplan SA, Cohen P (2007) The somatomedin hypothesis 50 years later. J Clin Endocrinol Metab. 92(12): 4529–35

    Article  CAS  PubMed  Google Scholar 

  17. Cassano M et al. (2009) Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. Journal of Muscle Research and Cell Motility. 30(7-8): 243–253

    Article  PubMed  Google Scholar 

  18. Elis S et al. (2011) Increased serum IGF-1 levels protect the musculoskeletal system but are associated with elevated oxidative stress markers and increased mortality independent of tissue igf1 gene expression. Aging Cell. 10(3): 547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hameed M et al. (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. The Journal of Physiology. 547(1): 247–254

    Article  CAS  PubMed  Google Scholar 

  20. Goldspink G (2012) Age-Related Loss of Muscle Mass and Strength. Journal of Aging Research. 1–11

    Google Scholar 

  21. Rotwein P (1986) Two insulin-like growth factor i messenger rnas are expressed in human liver. Proc Natl Acad Sci U S A. 83(1): 77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McKoy G et al. (1999) Expression of insulin growth factor-1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol. 516 (Pt 2): 583–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dluzniewska J (2005) A strong neuroprotective effect of the autonomous C-terminal peptide of IGF-1 Ec (MGF) in brain ischemia. The FASEB Journal

    Google Scholar 

  24. Heinemeier KM et al. (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol (1985). 102(2): 573–81

    Article  CAS  Google Scholar 

  25. Schmid C et al. (1983) Preferential enhancement of myoblast differentiation by insulin-like growth factors (IGF I and IGF II) in primary cultures of chicken embryonic cells. FEBS Lett;161(1): 117–21

    Article  CAS  PubMed  Google Scholar 

  26. Elis S et al. (2011) Unbound (bioavailable) IGF1 enhances somatic growth. Disease Models & Mechanisms. 4(5): 649–658

    Article  CAS  Google Scholar 

  27. Grzelkowska-Kowalczyk K, Wieteska-Skrzeczyńska W (2010) Treatment with TNF-α and IFN-γ alters the activation of SER/THR protein kinases and the metabolic response to IGF-I in mouse c2c12 myogenic cells. Cellular & Molecular Biology Letters. 15(1): 13–31

    Article  CAS  Google Scholar 

  28. Rommel C et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 3(11): 1009–13

    Article  CAS  PubMed  Google Scholar 

  29. Peruzzi F (2001) Anti-apoptotic Signaling of the Insulin-like Growth Factor-I Receptor through Mitochondrial Translocation of c-Raf and Nedd4. Journal of Biological Chemistry. 276(28): 25990–25996

    Article  CAS  PubMed  Google Scholar 

  30. Ciaraldi TP et al. (2002) Insulin and insulin-like growth factor-1 action on human skeletal muscle: preferential effects of insulin-like growth factor-1 in type 2 diabetic subjects. Metabolism. 51(9): 1171–9

    Article  CAS  PubMed  Google Scholar 

  31. Clemmons DR (2009) Role of IGF-I in skeletal muscle mass maintenance. Trends in Endocrinology & Metabolism. 20(7): 349–356

    Article  CAS  Google Scholar 

  32. Yang ZZ et al. (2004) Physiological functions of protein kinase B/Akt. Biochem Soc Trans. 32(Pt 2): 350–4

    Article  Google Scholar 

  33. Southgate RJ et al. (2007) FOXO1 Regulates the Expression of 4E-BP1 and Inhibits mTOR Signaling in Mammalian Skeletal Muscle. Journal of Biological Chemistry. 282(29): 21176–21186

    Article  CAS  PubMed  Google Scholar 

  34. Pedersen BK (2009) The diseasome of physical inactivity -- and the role of myokines in muscle--fat cross talk. J Physiol. 587(Pt 23): 5559–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elliott B et al. (2012) The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiologica. 205(3): 324–340

    Article  CAS  PubMed  Google Scholar 

  36. Mounier R et al. (2009) Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. FASEB J. 23(7): 2264–73

    Article  CAS  PubMed  Google Scholar 

  37. Lantier L et al. (2010) Coordinated maintenance of muscle cell size control by AMP-activated protein kinase. FASEB J. 24(9): 3555–61

    Article  CAS  PubMed  Google Scholar 

  38. Hornberger TA et al. (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J. 380(Pt 3 795–804

    Article  Google Scholar 

  39. Hornberger TA et al. (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A. 103(12): 4741–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. O'Neil TK et al. (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol. 587(Pt 14): 3691–701

    Article  CAS  Google Scholar 

  41. Coffey VG et al. (2006) Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab. 290(5): E849–55

    Article  CAS  Google Scholar 

  42. Nader GA (2006) Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 38(11): 1965–70

    Article  PubMed  Google Scholar 

  43. McPherron A et al. (1997) Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 387(6628): 83–90

    Article  CAS  PubMed  Google Scholar 

  44. McPherron A et al. (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 94(23): 12457–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin J et al. (2002) Myostatin Knockout in Mice Increases Myogenesis and Decreases Adipogenesis. Biochemical and Biophysical Research Communications. 291(3): 701–706

    Article  CAS  PubMed  Google Scholar 

  46. Zimmers TA (2002) Induction of Cachexia in Mice by Systemically Administered Myostatin. Science. 296(5572): 1486–1488

    Article  CAS  PubMed  Google Scholar 

  47. Hadjipavlou G et al. (2008) Two single nucleotide polymorphisms in themyostatin(GDF8) gene have significant association with muscle depth of commercial Charollais shee Animal Genetics. 39(4): 346–353

    Google Scholar 

  48. Rebbapragada A et al. (2003) Myostatin Signals through a Transforming Growth Factor -Like Signaling Pathway To Block Adipogenesis. Molecular and Cellular Biology. 23(20): 7230–7242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu X et al. (2004) Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine. 26(6): 262–272

    Article  CAS  PubMed  Google Scholar 

  50. Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol. 292(1): C188–99

    Article  CAS  Google Scholar 

  51. Philip B, Lu Z, Gao Y (2005) Regulation of GDF-8 signaling by the p38 MAPK. Cellular Signalling, 2005. 17(3): 365–375

    Article  CAS  PubMed  Google Scholar 

  52. Huang Z et al. (2007) Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cellular Signalling. 19(11): 2286–2295

    Article  CAS  PubMed  Google Scholar 

  53. Martin-Blanco E (2000) p38 MAPK signalling cascades: ancient roles and new functions. Bioessays. 22(7): 637–45

    Article  CAS  PubMed  Google Scholar 

  54. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal. 12(1): 1–13

    Article  CAS  PubMed  Google Scholar 

  55. Wong A (2002) FRS2alpha attenuates FGF receptor signaling by Grb2- mediated recruitment of the ubiquitin ligase Cbl. Proceedings of the National Academy of Sciences. 99(10): 6684–6689

    Article  CAS  Google Scholar 

  56. Lax I et al. (2002) The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol Cell.10(4): 709–19

    Article  CAS  PubMed  Google Scholar 

  57. Dailey L et al. (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine & Growth Factor Reviews. 16(2): 233–247

    Article  CAS  Google Scholar 

  58. Katoh M, Katoh M (2006) FGF signaling network in the gastrointestinal tract (review). Int J Oncol. 9(1): 163–8

    Google Scholar 

  59. Yun YR et al. (2010) Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010: 218142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Spivak-Kroizman T et al. (1994) Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells. J Biol Chem.269(20): 14419–23

    CAS  PubMed  Google Scholar 

  61. Kolkova K et al. (2000) Neural Cell Adhesion Molecule-Stimulated Neurite Outgrowth Depends on Activation of Protein Kinase C and the Ras–Mitogen - Activated Protein Kinase Pathway. The Journal of Neuroscience. 20(6): 2238–2246

    CAS  PubMed  Google Scholar 

  62. Lorda-Diez CI et al. (2010) Tgfβ2 and 3 are coexpressed with their extracellular regulator Ltbp1 in the early limb bud and modulate mesodermal outgrowth and BMP signaling in chicken embryos. BMC Developmental Biology. 10(1): 69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell. 16(3): 329–43

    Article  CAS  PubMed  Google Scholar 

  64. Millan F (1991) Embryonic gene expression patterns of TGF 2 and p3 suggest

    Google Scholar 

  65. Cusella-De Angelis MG et al. (1994) Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development. 120(4): 925–33

    CAS  PubMed  Google Scholar 

  66. Filvaroff EH et al. (1994) Inhibition of myogenic differentiation in myoblasts expressing a truncated type II TGF-beta receptor. Development.120(5): 1085–95

    CAS  PubMed  Google Scholar 

  67. Merino R et al. (1998) Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev Biol. 200(1): 35–45

    Article  CAS  PubMed  Google Scholar 

  68. Spagnoli A et al. (2007) TGF-signaling is essential for joint morphogenesis. The Journal of Cell Biology. 177(6): 1105–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seo HS, Serra R (2007) Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev Biol. 310(2): 304–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pryce BA et al. (2009) Recruitment and maintenance of tendon progenitors by TGF signaling are essential for tendon formation. Development. 136(8): 1351–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Smith AL, Robin TP, Ford HL (2012) Molecular pathways: targeting the TGF-beta pathway for cancer therapy. Clin Cancer Res. 18(17): 4514–21

    Article  CAS  PubMed  Google Scholar 

  72. Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol. 21: 659–93

    Article  CAS  PubMed  Google Scholar 

  73. Gerber HP et al. (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 5(6): 623–8

    Article  CAS  PubMed  Google Scholar 

  74. Frey SP et al. (2012) VEGF Improves Skeletal Muscle Regeneration After Acute Trauma and Reconstruction of the Limb in a Rabbit Model. Clinical Orthopaedics and Related Research®. 470(12): 3607–3614

    Article  Google Scholar 

  75. Baumgartner I et al. (1998) Constitutive Expression of phVEGF165 After Intramuscular Gene Transfer Promotes Collateral Vessel Development in Patients With Critical Limb Ischemia. Circulation. 97(12): 1114–1123

    Article  CAS  PubMed  Google Scholar 

  76. Vieira JM et al. (2010) VEGF receptor signaling in vertebrate development. Organogenesis. 6(2): 97–106

    Article  PubMed  PubMed Central  Google Scholar 

  77. Horowitz A, Seerapu HR (2012) Regulation of VEGF signaling by membrane traffic. Cellular Signalling. 24(9): 1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gearing DP et al. (1987) Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 20; 6(13): 3995–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hilton DJ et al. (1988) Specific binding of murine leukemia inhibitory factor to normal and leukemic monocytic cells.Proc Natl Acad Sci U S A. 85(16): 5971–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Metcalf D (1992) Leukemia inhibitory factor--a puzzling polyfunctional regulator. Growth Factors. 7(3): 169–73

    Article  CAS  PubMed  Google Scholar 

  81. Hunt LC et al. (2013) An anti-inflammatory role for leukemia inhibitory factor receptor signaling in regenerating skeletal muscle. Histochemistry and Cell Biology. 139(1): 13–34

    Article  CAS  PubMed  Google Scholar 

  82. Gallucci S et al. (1998) Myoblasts produce IL-6 in response to inflammatory stimuli.Int Immunol. 1; 10(3): 267–73

    Article  CAS  PubMed  Google Scholar 

  83. Grimaud E et al. (2002) Leukaemia Inhibitory Factor (Lif) Is Expressed in Hypertrophic Chondrocytes and Vascular Sprouts during Osteogenesis. Cytokine. 20(5): 224–230

    Article  CAS  PubMed  Google Scholar 

  84. Kurek J et al. (1997) The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 20(7): 815–22

    Article  CAS  PubMed  Google Scholar 

  85. Murata M et al. (1999) Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, enhances L-type Ca2+ current and [Ca2+]i transient in cardiomyocytes. J Mol Cell Cardiol. 31(1): 237–45

    Article  CAS  PubMed  Google Scholar 

  86. Gearing DP et al. (1992) The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science. 255(5050): 1434–7

    Article  CAS  PubMed  Google Scholar 

  87. Cheng JG et al. (2001) Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proceedings of the National Academy of Sciences. 98(15): 8680–8685

    Article  CAS  Google Scholar 

  88. Heinrich P et al. (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374(Pt 1): 11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Poehlmann TG et al. (2005) Trophoblast invasion: tuning through LIF, signalling via Stat3. Placenta. 26: S37–S41

    Article  CAS  Google Scholar 

  90. Kimber SJ (2005) Leukaemia inhibitory factor in implantation and uterine biology. Reproduction. 130(2): 131–145

    Article  CAS  PubMed  Google Scholar 

  91. Tapia A et al. (2008) Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2. Human Reproduction. 23(8): 1724–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Karalaki M et al. (2009) Muscle regeneration: cellular and molecular events. In Vivo. 23(5): 779–96

    CAS  PubMed  Google Scholar 

  93. Hsu C, Chang J (2004) Clinical implications of growth factors in flexor tendon wound healing. J Hand Surg Am. 29(4): 551–63

    Article  PubMed  Google Scholar 

  94. Gabrielli A et al. (2007) Stimulatory autoantibodies to the PDGF receptor: A link to fibrosis in scleroderma and a pathway for novel therapeutic targets. Autoimmunity Reviews. 7(2): 121–126

    Article  CAS  PubMed  Google Scholar 

  95. Wang Z et al. (2007) Down-regulation of Platelet-Derived Growth Factor-D Inhibits Cell Growth and Angiogenesis through Inactivation of Notch-1 and Nuclear Factor- B Signaling. Cancer Research. 67(23): 11377–11385

    Article  CAS  PubMed  Google Scholar 

  96. Kong D et al. (2008) Mammalian Target of Rapamycin Repression by 3,3'-Diindolylmethane Inhibits Invasion and Angiogenesis in Platelet-Derived Growth Factor-D-Overexpressing PC3 Cells. Cancer Research. 68(6): 1927–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kong D et al. (2008) Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells. 26(6): 1425–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang Z et al. (2010) Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochimica et Biophysica Acta (BBA) – Reviews on Cancer. 1806(1): 122–130

    Article  CAS  Google Scholar 

  99. Ruschke K et al. (2012) BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell and Tissue Research. 347(3): 521–544

    Article  CAS  PubMed  Google Scholar 

  100. Luther G et al. (2011) BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr Gene Ther. 11(3): 229–40

    Article  CAS  PubMed  Google Scholar 

  101. Urist MR (2002) Bone: formation by autoinduction. 1965. Clin Orthop Relat Res. (395): 4–10

    Article  Google Scholar 

  102. Wozney JM et al. (1988) Novel regulators of bone formation: molecular clones and activities. Science. 242(4885): 1528–34

    Article  CAS  PubMed  Google Scholar 

  103. Hu J et al. (2004) Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Developmental Biology. 276(1): 158–171

    Article  CAS  PubMed  Google Scholar 

  104. Kuo A et al. (2006) Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis and Cartilage. 14(11): 1126–1135

    Article  CAS  PubMed  Google Scholar 

  105. Di Cesare PE et al. (2006) Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix. Journal of Orthopaedic Research, 2006. 24(5): 1118–1127

    Article  CAS  PubMed  Google Scholar 

  106. Luu HH et al. (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. Journal of Orthopaedic Research. 25(5): 665–677

    Article  CAS  PubMed  Google Scholar 

  107. Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science. 31; 296(5573): p 1646–7

    Article  CAS  PubMed  Google Scholar 

  108. Shi Y, Massagué J (2003) Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell. 113(6): 685–700

    Article  CAS  PubMed  Google Scholar 

  109. Varga AC, Wrana JL (2005) The disparate role of BMP in stem cell biology. Oncogene. 24(37): 5713–5721

    Article  CAS  PubMed  Google Scholar 

  110. Zhang J, Li L (2005) BMP signaling and stem cell regulation. Developmental Biology. 284(1): 1–11

    Article  CAS  PubMed  Google Scholar 

  111. Chen YG, Massagué J (1999) Smad1 recognition and activation by the ALK1 group of transforming growth factor-beta family receptors. J Biol Chem. 274(6): 3672–7

    Article  CAS  PubMed  Google Scholar 

  112. Massague J (2005) Smad transcription factors. Genes & Development. 19(23): 2783–2810

    Article  CAS  Google Scholar 

  113. Sieber C et al. (2009) Recent advances in BMP receptor signaling. Cytokine & Growth Factor Reviews. 20(5-6): 343–355

    Article  CAS  Google Scholar 

  114. Mu Y, Gudey SK, Landström M (2011) Non-Smad signaling pathways. Cell and Tissue Research. 347(1): 11–20

    Article  PubMed  CAS  Google Scholar 

  115. Yamaguchi K et al. (1999) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 18(1): 179–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sorrentino A et al. (2008) The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology. 10(10): 1199–1207

    Article  CAS  PubMed  Google Scholar 

  117. Liu Z et al. (2009) GDF5 and BMP2 inhibit apoptosis via activation of BMPR2 and subsequent stabilization of XIA Biochimica et Biophysica Acta (BBA) Molecular Cell Research. 1793(12): 1819–1827

    CAS  Google Scholar 

  118. Cohen S (1960) Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuo-cytotoxic antiserum. Proc Natl Acad Sci U S A. 46(3): 302–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 237: 1555–62

    CAS  PubMed  Google Scholar 

  120. Savage CR Jr, Cohen S (1972) Epidermal growth factor and a new derivative. Rapid isolation procedures and biological and chemical characterization. J Biol Chem. 10; 247(23): 7609–11

    CAS  Google Scholar 

  121. Armelin HA (1973) Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A. 70(9): 2702–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hollenberg MD, Cuatrecasas (1973) Epidermal growth factor: receptors in human fibroblasts and modulation of action by cholera toxin. Proc Natl Acad Sci U S A. 70(10): 2964–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Throm A.M et al. (2010) Development of a cell-derived matrix: Effects of epidermal growth factor in chemically defined culture. J Biomed Mater Res A. 92(2): 533–41

    PubMed  Google Scholar 

  124. Cole BJ et al. (2010) Platelet-Rich Plasma: Where Are We Now and Where Are We Going? Sports Health: A Multidisciplinary Approach. 2(3): 203–210

    Article  Google Scholar 

  125. Rongo C (2011) Epidermal growth factor and aging: a signaling molecule reveals a new eye opening function Aging (Albany NY). 3(9): 896–905

    Google Scholar 

  126. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nature Reviews Cancer. 2(7): 489–501

    Article  CAS  PubMed  Google Scholar 

  127. Morgensztern D, McLeod HL (2005) PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 16(8): 797–803

    Article  CAS  PubMed  Google Scholar 

  128. Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes & Development, 1994. 8(2): 133–146

    Article  CAS  Google Scholar 

  129. Herpin A (2004) Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Developmental & Comparative Immunology. 28(5): 461–485

    Article  CAS  Google Scholar 

  130. Sullivan AM, O'Keeffe GW (2005) The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: relevance to Parkinson's disease treatment.J Anat. 207(3): 219–26

    Article  CAS  Google Scholar 

  131. Neeper SA et al. (1995) Exercise and brain neurotrophins. Nature. 373(6510): 109

    Article  CAS  PubMed  Google Scholar 

  132. Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27(10): 589–94

    Article  CAS  PubMed  Google Scholar 

  133. Mousavi K,Jasmin BJ (2006) BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci. 26(21): 5739–49

    Article  CAS  PubMed  Google Scholar 

  134. McAllister AK, Katz LC, Lo DC (1999) Neurotrophins and synaptic plasticity. Annu Rev Neurosci. 22: 295–318

    Article  CAS  PubMed  Google Scholar 

  135. Tyler WJ et al. (2002) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 9(5): 224–37

    Article  PubMed  PubMed Central  Google Scholar 

  136. Binder DK (2004) The role of BDNF in epilepsy and other diseases of the mature nervous system. Adv Exp Med Biol. 548: 34–56

    Article  CAS  PubMed  Google Scholar 

  137. Lindsay RM (1994) Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neurotrophins and ciliary neurotrophic factor. Neurobiol Aging. 15(2): 249–51

    Article  CAS  PubMed  Google Scholar 

  138. Yamamoto H, Gurney ME (1990) Human platelets contain brain-derived neurotrophic factor. J Neurosci. 10(11): 3469–78

    CAS  PubMed  Google Scholar 

  139. Adlard PA et al. (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci. 25(17): 4217–21

    Article  CAS  PubMed  Google Scholar 

  140. Eggermont L et al. (2006) Exercise, cognition and Alzheimer's disease: more is not necessarily better. Neurosci Biobehav Rev. 30(4): 562–75

    Article  PubMed  Google Scholar 

  141. Knaepen K et al. (2010) Neuroplasticity – exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 40(9): 765–801

    Article  PubMed  Google Scholar 

  142. Schulz, K.H et al. () Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J Neurol Sci, 2004. 225(1–2): 11–8

    Article  CAS  PubMed  Google Scholar 

  143. Gustafsson, G et al. () The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder. Psychiatry Res, 2009. 169(3): 244–8

    Article  CAS  PubMed  Google Scholar 

  144. Pan W et al. (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 37(12): 1553–61

    Article  CAS  PubMed  Google Scholar 

  145. Zoladz JA et al. (2008) Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 59 Suppl 7: 119–32

    PubMed  Google Scholar 

  146. Chan KL, Tong KY, Yip SP (2008) Relationship of serum brain-derived neurotrophic factor (BDNF) and health-related lifestyle in healthy human subjects. Neurosci Lett. 447(2–3): 124–8

    Article  CAS  PubMed  Google Scholar 

  147. Cho HC et al. (2012) The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO(2)max performance in healthy college men. Neurosci Lett. 519(1): 78–83

    Article  CAS  PubMed  Google Scholar 

  148. Correia PR et al. (2011) Increased basal plasma brain-derived neurotrophic factor levels in sprint runners. Neurosci Bull. 27(5): 325–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Webster MJ et al. (2006) BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns. 6(8): 941–51

    Article  CAS  PubMed  Google Scholar 

  150. Foster PP, Rosenblatt KP, Kuljis RO (2011) Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer's disease. Front Neurol. 2: 28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Holsinger RM et al. (2000) Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer's disease. Brain Res Mol Brain Res. 76(2): 347–54

    Article  CAS  PubMed  Google Scholar 

  152. Komulainen P et al. (2008) BDNF is a novel marker of cognitive function in ageing women: the DR's EXTRA Study. Neurobiol Learn Mem. 90(4): 596–603

    Article  CAS  PubMed  Google Scholar 

  153. Makar TK et al. (2008) Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci. 270(1–2): 70–6

    Article  CAS  PubMed  Google Scholar 

  154. Oppenheim RW et al. (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature, 1992. 360(6406): 755–7

    Article  CAS  PubMed  Google Scholar 

  155. Sendtner M et al. (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature. 360(6406): 757–9

    Article  CAS  PubMed  Google Scholar 

  156. Zhang X, Poo MM (2002) Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron. 36(4): 675–88

    Article  CAS  PubMed  Google Scholar 

  157. Griesbeck O et al. (1995) Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J Neurosci Res. 42(1): 21–33

    Article  CAS  PubMed  Google Scholar 

  158. Lenk K, Schuler G, Adams V (2010) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 1(1): 9–21

    Article  PubMed  PubMed Central  Google Scholar 

  159. Duan C, Ren H, Gao S (2010) Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. General and Comparative Endocrinology. 167(3): 344–351

    Article  CAS  PubMed  Google Scholar 

  160. Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol. 135(2): 431–40

    Article  CAS  PubMed  Google Scholar 

  161. Hirata A et al. (2003) Expression profiling of cytokines and related genes in regenerating skeletal muscle after cardiotoxin injection: a role for osteopontin.Am J Pathol. 163(1): 203–15

    CAS  Google Scholar 

  162. Nystrom G et al. (2009) Local insulin-like growth factor I prevents sepsis-induced muscle atrophy. Metabolism. 58(6): 787–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Firth SM (2002) Cellular Actions of the Insulin-Like Growth Factor Binding Proteins. Endocrine Reviews. 23(6): 824–854

    Article  CAS  PubMed  Google Scholar 

  164. Wieteska-Skrzeczyńska W, Grzelkowska-Kowalczyk K, Rejmak E (2011) Growth factor and cytokine interactions in myogenesis. Part II. Expression of IGF binding proteins and protein kinases essential for myogenesis in mouse C2C12 myogenic cells exposed to TNF-α and IFN-γ. Polish Journal of Veterinary Sciences. 14(3)

    Google Scholar 

  165. Tripathi G et al. (2009) IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. The FASEB Journal. 23(8): 2616–2626

    Article  CAS  PubMed  Google Scholar 

  166. Ji M et al. (2008) Myostatin induces p300 degradation to silence cyclin D1 expression through the PI3K/PTEN/Akt pathway. Cellular Signalling. 20(8): 1452–1458

    Article  CAS  PubMed  Google Scholar 

  167. Gentile MA et al. (2010) Androgen-mediated improvement of body composition and muscle function involves a novel early transcriptional program including IGF1, mechano growth factor, and induction of -catenin. Journal of Molecular Endocrinology. 44(1): 55–73

    Article  CAS  PubMed  Google Scholar 

  168. Baker J et al. (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 75(1): 73–82

    Article  CAS  PubMed  Google Scholar 

  169. Liu JL et al. (1998) Insulin-like growth factor-I affects perinatal lethality and postnatal development in a gene dosage-dependent manner: manipulation using the Cre/loxP system in transgenic mice. Mol Endocrinol. 12(9): 1452–62

    Article  CAS  PubMed  Google Scholar 

  170. Sutter NB et al. (2007) A Single IGF1 Allele Is a Major Determinant of Small Size in Dogs. Science. 316(5821): 112–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Savage MO et al. (2006) Endocrine assessment, molecular characterization and treatment of growth hormone insensitivity disorders. Nat Clin Pract Endocrinol Metab. 2(7): 395–407

    Article  CAS  PubMed  Google Scholar 

  172. Abuzzahab JM et al. (2003) IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation.N Engl J Med. 349(23): 2211–22

    Article  CAS  Google Scholar 

  173. Negishi S et al. (2005) The Effect of Relaxin Treatment on Skeletal Muscle Injuries. The American Journal of Sports Medicine. 33(12): 1816–1824

    Article  PubMed  Google Scholar 

  174. Menetrey J et al. (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg Br. 82(1): 131–7

    Article  CAS  PubMed  Google Scholar 

  175. Fryburg DA (1994) Insulin-like growth factor I exerts growth hormone- and insulin-like actions on human muscle protein metabolism. Am J Physiol. 267(2 Pt 1): E331–6

    Google Scholar 

  176. Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats.J Appl Physiol; 84(5): 1716–22

    CAS  Google Scholar 

  177. Bark TH et al. (1998) Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Physiol. 275(1 Pt 1): E118–23

    Google Scholar 

  178. Barton-Davis ER et al. (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function Proc Natl Acad Sci U S A. 95(26): 15603–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chakravarthy MV et.al. (2000) IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle.J Appl Physiol; 89(4): 1365–79

    CAS  PubMed  Google Scholar 

  180. Musarò A et al. (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 27(2): 195–200

    Article  PubMed  Google Scholar 

  181. Pelosi L et al. (2007) Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. The FASEB Journal. 21(7): 1393–1402

    Article  CAS  PubMed  Google Scholar 

  182. Bodine SC et al. (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 23; 294(5547): 1704–8

    Article  CAS  PubMed  Google Scholar 

  183. Sacheck JM (2004) IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. AJP: Endocrinology and Metabolism. 287(4): E591–E601

    CAS  Google Scholar 

  184. Schakman O (2005) Insulin-Like Growth Factor-I Gene Transfer by Electroporation Prevents Skeletal Muscle Atrophy in Glucocorticoid-Treated Rats. Endocrinology. 146(4): 1789–1797

    Article  CAS  PubMed  Google Scholar 

  185. Goldspink G, Wessner B, Bachl N (2008) Growth factors, muscle function and doping. Curr Opin Pharmacol. 8(3): 352–7

    Article  CAS  PubMed  Google Scholar 

  186. Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. The Journal of Physiology. 549(2): 409–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bamman MM et al. (2007) Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol. 102(6): 2232–9

    Article  CAS  PubMed  Google Scholar 

  188. Goldspink G, Yang SY (2004) The splicing of the IGF-I gene to yield different muscle growth factors. Adv Genet. 52: 23–49

    CAS  PubMed  Google Scholar 

  189. Gunther S et al. (2013) Myf5-positive satellite cells contribute to pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell. 13(5): 590–601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Klossner S et al. (2009) Mechano-transduction to muscle protein synthesis is modulated by FAK. Eur J Appl Physiol. 106(3): 389–98

    Article  CAS  PubMed  Google Scholar 

  191. Kandalla PK et al. (2011) Mechano Growth Factor E peptide (MGF-E), derived from an isoform of IGF-1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mech Ageing Dev. 132(4): 154–62

    Article  CAS  PubMed  Google Scholar 

  192. Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration.Ann N Y Acad Sci. 854: 78–91

    Article  CAS  Google Scholar 

  193. Barton-Davis ER, Shoturma DI, Sweeney HL (1999) Contribution of satellite cells to IGF-I induced hypertrophy of skeletal muscle. Acta Physiol Scand. 167(4): 301–5

    Article  CAS  PubMed  Google Scholar 

  194. Barton ER, DeMeo J, Lei H (2010) The insulin-like growth factor (IGF)-I E-peptides are required for isoform-specific gene expression and muscle hypertrophy after local IGF-I production. J Appl Physiol (1985). 108(5): 1069–76

    Article  CAS  Google Scholar 

  195. Kadi F et al. (2004) Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve. 29(1): 120–7

    Article  PubMed  Google Scholar 

  196. Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84(1): 209–38

    Article  PubMed  Google Scholar 

  197. Alway SE et al. (2002) Potential role for Id myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats. Am J Physiol Cell Physiol. 283(1): C66–76

    Article  Google Scholar 

  198. Bigot A et al. (2008) Replicative aging down-regulates the myogenic regulatory factors in human myoblasts. Biol Cell,. 100(3): 189–99

    Article  CAS  PubMed  Google Scholar 

  199. Ryall JG, Schertzer JD, Lynch GS (2008) Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology. 9(4): 213–28

    Article  CAS  PubMed  Google Scholar 

  200. Liu Y et al. (2008) Response of growth and myogenic factors in human skeletal muscle to strength training. Br J Sports Med. 42(12): 989–93

    Article  CAS  PubMed  Google Scholar 

  201. Carpenter V et al. (2008) Mechano-growth factor reduces loss of cardiac function in acute myocardial infarction. Heart Lung Circ. 17(1): 33–9

    Article  PubMed  Google Scholar 

  202. Beiter T et al. (2011) Direct and long-term detection of gene doping in conventional blood samples. Gene Ther. 18(3): 225–31

    Article  CAS  PubMed  Google Scholar 

  203. Edwall D et al. (1989) Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle. Endocrinology. 124(2): 820–5

    Article  CAS  PubMed  Google Scholar 

  204. Levinovitz A et al. (1992) Activation of insulin-like growth factor II expression during skeletal muscle regeneration in the rat: correlation with myotube formation. Mol Endocrinol. 6(8): 1227–34

    CAS  PubMed  Google Scholar 

  205. Krishan K, Dhoot GK (1996) Changes in some troponin and insulin-like growth factor messenger ribonucleic acids in regenerating and denervated skeletal muscles. J Muscle Res Cell Motil. 17(5): 513–21

    Article  CAS  PubMed  Google Scholar 

  206. Bakay M et al. (2002) A web-accessible complete transcriptome of normal human and DMD muscle Neuromuscul Disord. 12 Suppl 1: S125–41

    Article  Google Scholar 

  207. Hayashi S et al. (2004) Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochemistry and Cell Biology. 122(5): 427–434

    Article  CAS  PubMed  Google Scholar 

  208. Husmann I et al. (1996) Growth factors in skeletal muscle regeneration Cytokine Growth Factor Rev. 7(3): 249–58

    Article  CAS  PubMed  Google Scholar 

  209. de Lapeyrière O et al. (1993) Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo. Development. 118(2): 601–11

    Google Scholar 

  210. Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes & Development. 11(16): 2040–2051

    Article  CAS  Google Scholar 

  211. Kastner S et al. (2000) Gene Expression Patterns of the Fibroblast Growth Factors and Their Receptors During Myogenesis of Rat Satellite Cells. Journal of Histochemistry & Cytochemistry. 48(8): 1079–1096

    Article  CAS  Google Scholar 

  212. Anderson JE et al. (1995) The time course of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice Exp Cell Res. 216(2): 325–34

    Article  CAS  PubMed  Google Scholar 

  213. Mitchell CA et al. (1996) The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration.Growth Factors. 13(1–2): 37–55

    Article  CAS  PubMed  Google Scholar 

  214. Nakamura S et al. (2008) Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydrogel onin vitro andin vivo vascularization. Journal of Biomedical Materials Research Part A. 85A(3): 619–627

    Article  CAS  Google Scholar 

  215. Lee J-S et al. (2007) Combined administration of naked DNA vectors encoding VEGF and bFGF enhances tissue perfusion and arteriogenesis in ischemic hindlimb. Biochemical and Biophysical Research Communications. 360(4): 752–758

    Article  CAS  PubMed  Google Scholar 

  216. Efthimiadou A (2006) Angiogenic effect of intramuscular administration of basic and acidic fibroblast growth factor on skeletal muscles and influence of exercise on muscle angiogenesis * Commentary. British Journal of Sports Medicine. 40(1): 35–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Rosengart TK et al. (1997) Therapeutic angiogenesis: a comparative study of the angiogenic potential of acidic fibroblast growth factor and heparin. J Vasc Surg. 26(2): 302–12

    Article  CAS  PubMed  Google Scholar 

  218. Lefaucheur JP, Sebille A. (1995) Basic fibroblast growth factor promotes in vivo muscle regeneration in murine muscular dystrophy. Neurosci Lett. 202(1-2): 121–4

    Article  CAS  PubMed  Google Scholar 

  219. Lefaucheur JP, Sébille A. (1995) Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol. 57(1–2): 85–91

    Article  CAS  PubMed  Google Scholar 

  220. Yablonka-Reuveni Z, Seger R, Rivera AJ (1999) Fibroblast Growth Factor Promotes Recruitment of Skeletal Muscle Satellite Cells in Young and Old Rats. Journal of Histochemistry & Cytochemistry. 47(1): 23–42

    Article  CAS  Google Scholar 

  221. Conlon I, Raff M (1999) Size control in animal development.Cell. 96(2): 235–44

    Article  CAS  PubMed  Google Scholar 

  222. Benabdallah BF, Bouchentouf M, Tremblay JP (2005) Improved success of myoblast transplantation in mdx mice by blocking the myostatin signal. Transplantation. 79(12): 1696–702

    Article  CAS  PubMed  Google Scholar 

  223. Carlson CJ et al. (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol. 277(2 Pt 2): R601–6

    CAS  PubMed  Google Scholar 

  224. Dasarathy S et al. (2004) Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. Am J Physiol Gastrointest Liver Physiol. 287(6): G1124–30

    Article  CAS  Google Scholar 

  225. Kim JS, Cross JM, Bamman MM (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab. 288(6): E1110–9

    Article  CAS  Google Scholar 

  226. Haddad FH, Mahafza SM (2008) Impact of metabolic syndrome's components on the development of cardiovascular disease in a Jordanian cohort with metabolic syndrome. Saudi Med J. 29(9): 1299–305

    PubMed  Google Scholar 

  227. Garma T et al. (2007) Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise. J Appl Physiol (1985). 102(1): 135–43

    Article  CAS  PubMed  Google Scholar 

  228. Kim JS et al. (2007) Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol (1985). 103(5): 1488–95

    Article  CAS  Google Scholar 

  229. Hittel DS et al. (2009) Increased Secretion and Expression of Myostatin in Skeletal Muscle From Extremely Obese Women. Diabetes. 58(1): 30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Suryawan A et al. (2006) Expression of the TGF-β Family of Ligands Is Developmentally Regulated in Skeletal Muscle of Neonatal Rats. Pediatric Research. 59(2): 175–179

    Article  CAS  PubMed  Google Scholar 

  231. Taylor WE et al. (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells.Am J Physiol Endocrinol Metab. 280(2): E221–8

    Google Scholar 

  232. Welle S, Bhatt K, Pinkert CA (2006) Myofibrillar protein synthesis in myostatin-deficient mice. Am J Physiol Endocrinol Metab. 290(3): E409–15

    Article  CAS  Google Scholar 

  233. Stewart CE, Rittweger J (2006) Adaptive processes in skeletal muscle: molecular regulators and genetic influences. J Musculoskelet Neuronal Interact. 6(1): 73–86

    CAS  PubMed  Google Scholar 

  234. Amthor H et al. (2007) Lack of myostatin results in excessive muscle growth but impaired force generation. Proceedings of the National Academy of Sciences. 104(6): 1835–1840

    Article  CAS  Google Scholar 

  235. Kirk S et al. (2000) Myostatin regulation during skeletal muscle regeneration. J Cell Physiol. 184(3): 356–63

    Article  CAS  PubMed  Google Scholar 

  236. Roth S et al. (2003) Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication.Exp Biol Med (Maywood). 228(6): 706–9

    Article  CAS  Google Scholar 

  237. Louis E et al. (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 103(5): 1744–51

    Article  CAS  PubMed  Google Scholar 

  238. Hittel DS et al. (2010) Myostatin Decreases with Aerobic Exercise and Associates with Insulin Resistance. Medicine & Science in Sports & Exercise. 42(11): 2023–2029

    Article  CAS  Google Scholar 

  239. Klitgaard H et al. (1989) Morphological and biochemical changes in old rat muscles: effect of increased use. J Appl Physiol (1985). 67(4): 1409–17

    Google Scholar 

  240. Matsakas A et al. (2006) Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Experimental Physiology. 91(6): 983–994

    Article  CAS  PubMed  Google Scholar 

  241. Wehling M et al. (2000) Modulation of myostatin expression during modified muscle use. FASEB J. 14(1): 103–10

    CAS  PubMed  Google Scholar 

  242. Lawlor MW et al. (2011) Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice. The American Journal of Pathology. 178(2): 784–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Hulmi JJ et al. (2009) Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol. 106(5): 1720–9

    Article  CAS  PubMed  Google Scholar 

  244. Callis TE et al. (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. Journal of Clinical Investigation. 119(9): 2772–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Kraemer WJ et al. (2002) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 34(2): 364–80

    PubMed  Google Scholar 

  246. Willoughby DS (2004) Effects of an alleged myostatin-binding supplement and heavy resistance training on serum myostatin, muscle strength and mass, and body composition. Int J Sport Nutr Exerc Metab. 14(4): 461–72

    Article  CAS  PubMed  Google Scholar 

  247. Willoughby DS (2004) Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc. 36(4): 574–82

    Article  PubMed  Google Scholar 

  248. Peters D (2003) Asynchronous functional, cellular and transcriptional changes after a bout of eccentric exercise in the rat. The Journal of Physiology. 553(3): 947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Manini TM et al. (2011) Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol (Oxf). 201(2): 255–63

    Article  CAS  Google Scholar 

  250. Bogdanovich S et al. (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature. 420(6914): 418–21

    Article  CAS  PubMed  Google Scholar 

  251. Whittemore LA et al. (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun. 300(4): 965–71

    Article  CAS  PubMed  Google Scholar 

  252. McMahon CD et al. (2003) Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am J Physiol Endocrinol Metab. 285(1): E82–7

    Article  Google Scholar 

  253. Gentry BA et al. (2011) Hindlimb skeletal muscle function in myostatin-deficient mice. Muscle & Nerve. 43(1): 49–57

    Article  Google Scholar 

  254. Wagner KR et al. (2008) A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 63(5): 561–71

    Article  CAS  PubMed  Google Scholar 

  255. Yarasheski KE et al. (2002) Serum myostatin-immunoreactive protein is increased in 60-92 year old women and men with muscle wasting. J Nutr Health Aging. 6(5): 343–8

    CAS  PubMed  Google Scholar 

  256. Léger B et al. (2008) Human Sarcopenia Reveals an Increase in SOCS-3 and Myostatin and a Reduced Efficiency of Akt Phosphorylation. Rejuvenation Research. 11(1):163–175B

    Article  PubMed  CAS  Google Scholar 

  257. Marcell TJ et al. (2001) Comparison of GH, IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men. Am J Physiol Endocrinol Metab. 281(6): E1159–64

    Google Scholar 

  258. Ratkevicius A et al. (2011) Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci. 66(6): 620–6

    Article  CAS  PubMed  Google Scholar 

  259. Reardon KA et al. (2001) Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve. 24(7): 893–9

    Article  CAS  PubMed  Google Scholar 

  260. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 88(4): 1379–406

    Article  CAS  PubMed  Google Scholar 

  261. Fischer CP et al. (2007) Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand J Med Sci Sports. 17(5): 580–7

    CAS  PubMed  Google Scholar 

  262. Frost RA, Lang CH (2005) Skeletal muscle cytokines: regulation by pathogen-associated molecules and catabolic hormones. Curr Opin Clin Nutr Metab Care. 8(3): 255–63

    Article  CAS  PubMed  Google Scholar 

  263. Zhao B, Wall RJ, Yang J (2005) Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun. 337(1): 248–55

    Article  CAS  PubMed  Google Scholar 

  264. Lang CH et al. (2006) Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am J Physiol Regul Integr Comp Physiol. 290(4): R963–72

    Article  CAS  Google Scholar 

  265. Lang CH, Frost RA (2007) Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha. Metabolism. 56(1): 49–57

    Article  CAS  PubMed  Google Scholar 

  266. Deasy BM et al. (2009) Effect of VEGF on the Regenerative Capacity of Muscle Stem Cells in Dystrophic Skeletal Muscle. Molecular Therapy. 17(10): 1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Germani A et al. (2003)Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol. 163(4): 1417–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Arsic N et al. (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo. Molecular Therapy. 10(5): 844–854

    Article  CAS  PubMed  Google Scholar 

  269. Messina S et al. (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. The FASEB Journal. 21(13): 3737–3746

    Article  CAS  PubMed  Google Scholar 

  270. Levenberg S et al. (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 23(7): 879–84

    Article  CAS  PubMed  Google Scholar 

  271. Oshima H et al. (2005) Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther. 12(6): 1130–41

    Article  CAS  PubMed  Google Scholar 

  272. Baffour R et al. (2000) Angiogenic therapy for the chronically ischemic lower limb in a rabbit model. J Surg Res. 93(2): 219–29

    Article  CAS  PubMed  Google Scholar 

  273. Silvestre JS et al. (2003) Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res. 93(2): 114–23

    Article  CAS  PubMed  Google Scholar 

  274. Srivastava S, Terjung RL, Yang HT (2003) Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 285(3): H1190–7

    Article  Google Scholar 

  275. Voskuil M et al. (2003) Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. Am J Physiol Heart Circ Physiol. 284(4): H1422–8

    Article  Google Scholar 

  276. Lazarous DF et al. (2000) Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol. 36(4): 1239–44

    Article  CAS  PubMed  Google Scholar 

  277. Kusumanto YH et al. (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 17(6): 683–1

    Article  CAS  PubMed  Google Scholar 

  278. Allen RE, Boxhorn LK (1987) Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol. 133(3): 567–72

    Article  CAS  PubMed  Google Scholar 

  279. Allen RE, Boxhorn LK (1989) Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J Cell Physiol. 138(2): 311–5

    Article  CAS  PubMed  Google Scholar 

  280. Greene EA, Allen RE (1991) Growth factor regulation of bovine satellite cell growth in vitro.J Anim Sci. 69(1): 146–52

    Article  CAS  Google Scholar 

  281. Lefaucheur J-P et al. (1996) Angiogenic and inflammatory responses following skeletal muscle injury are altered by immune neutralization of endogenous basic fibroblast growth factor, insulin-like growth factor-1 and transforming growth factor-β1. Journal of Neuroimmunology. 70(1): 37–44

    Article  CAS  PubMed  Google Scholar 

  282. McLennan IS, Koishi K (2002) The transforming growth factor-betas: multifaceted regulators of the development and maintenance of skeletal muscles, motoneurons and Schwann cells. Int J Dev Biol. 46(4): 559–67

    CAS  PubMed  Google Scholar 

  283. Hamrick MW et al. (2010) Role of muscle-derived growth factors in bone formation. J Musculoskelet Neuronal Interact. 10(1): 64–70

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Spangenburg EE, Booth FW (2006) Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(−/−) mouse. Cytokine. 34(3-4): 125–130

    Article  CAS  PubMed  Google Scholar 

  285. Gregorevic P, Williams DA, Lynch GS (2002) Effects of leukemia inhibitory factor on rat skeletal muscles are modulated by clenbuterol. Muscle & Nerve. 25(2): 194–201

    Article  CAS  Google Scholar 

  286. Spangenburg EE, Booth FW (2002) Multiple signaling pathways mediate LIF-induced skeletal muscle satellite cell proliferation. AJP: Cell Physiology. 283(1): C204–C211

    Google Scholar 

  287. Austin L et al. (2000) Leukemia inhibitory factor ameliorates muscle fiber degeneration in the mdx mouse. Muscle Nerve. 23(11): 1700–5

    Article  CAS  PubMed  Google Scholar 

  288. Barnard W et al. (1994) Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle expresses lif mRNA. J Neurol Sci. 123(1-2): 108–13

    Article  CAS  PubMed  Google Scholar 

  289. White JD et al. (2001) Leukemia inhibitory factor enhances regeneration in skeletal muscles after myoblast transplantation.Muscle Nerve. 24(5): 695–7

    Article  CAS  Google Scholar 

  290. Dowsing BJ (1999) Leukemia inhibitory factor is an autocrine survival factor for Schwann cells. J Neurochem. 73(1): 96–104

    Article  PubMed  Google Scholar 

  291. Kami K et al. (2000) Gene Expression of Receptors for IL-6, LIF, and CNTF in Regenerating Skeletal Muscles. Journal of Histochemistry & Cytochemistry. 48(9): 1203–1213

    Article  CAS  Google Scholar 

  292. Fernyhough P, Maeda K, Tomlinson DR (1996) Brain-derived neurotrophic factor mRNA levels are up-regulated in hindlimb skeletal muscle of diabetic rats: effect of denervation. Exp Neurol. 141(2): 297–303

    Article  CAS  PubMed  Google Scholar 

  293. Funakoshi H et al. (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol, 1993. 123(2): 455–65

    Article  CAS  PubMed  Google Scholar 

  294. Funakoshi H et al. (1995) Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science. 268(5216): 1495–9

    Article  CAS  PubMed  Google Scholar 

  295. Gomez-Pinilla F et al. (2001) Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci. 13(6): 1078–84

    Article  CAS  PubMed  Google Scholar 

  296. Cuppini R et al. (2007) Bdnf expression in rat skeletal muscle after acute or repeated exercise. Arch Ital Biol. 145(2): 99–110

    CAS  PubMed  Google Scholar 

  297. Liem RS, Brouwer N, Copray JC (2001) Ultrastructural localisation of intramuscular expression of BDNF mRNA by silver-gold intensified non-radioactive in situ hybridisation. Histochem Cell Biol. 116(6): 545–51

    Article  CAS  PubMed  Google Scholar 

  298. Gonzalez M et al. (1999) Disruption of Trkb-mediated signaling induces disassembly of postsynaptic receptor clusters at neuromuscular junctions. Neuron. 24(3): 567–83

    Article  CAS  PubMed  Google Scholar 

  299. Kermani P et al. (2005) Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest. 115(3): 653–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Pitts EV et al. (2006) Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin. 44(2): 21–76

    Article  PubMed  Google Scholar 

  301. Adlard PA et al. (2004) The timecourse of induction of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus following voluntary exercise. Neurosci Lett. 363(1): 43–8

    Article  CAS  PubMed  Google Scholar 

  302. Widenfalk J, Olson L, Thoren P (1999) Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res. 34(3): 125–32

    Article  CAS  PubMed  Google Scholar 

  303. Gomez-Pinilla F et al. (2002) Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 88(5): 2187–95

    Article  CAS  PubMed  Google Scholar 

  304. Ogborn DI, Gardiner PF (2010) Effects of exercise and muscle type on BDNF, NT-4/5, and TrKB expression in skeletal muscle. Muscle Nerve. 41(3): 385–91

    Article  CAS  PubMed  Google Scholar 

  305. Luo J et al. (2005) Gene therapy for bone regeneration. Curr Gene Ther. 5(2): 167–79

    Article  CAS  PubMed  Google Scholar 

  306. Chen L et al. (2010) Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J Bone Miner Res. 25(11): 2447–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Rauch F et al. (2004) The ‘muscle-bone unit’ during the pubertal growth spurt. Bone. 2004. 34(5): 771–775

    Article  PubMed  Google Scholar 

  308. Greenlund LJ, Nair KS (2003) Sarcopenia--consequences, mechanisms, and potential therapies. Mech Ageing Dev. 124(3): 287–99

    Article  CAS  PubMed  Google Scholar 

  309. Warner SE et al. (2006) Botox induced muscle paralysis rapidly degrades bone. Bone. 38(2): 257–64

    Article  CAS  PubMed  Google Scholar 

  310. Stein H et al. (2002) The muscle bed--a crucial factor for fracture healing: a physiological concept. Orthopedics. 25(12): 1379–83

    PubMed  Google Scholar 

  311. Gerstenfeld LC, Einhorn TA (2003) Developmental aspects of fracture healing and the use of pharmacological agents to alter healing. J Musculoskelet Neuronal Interact. 3(4): 297–303; discussion 320–1

    CAS  PubMed  Google Scholar 

  312. Utvag SE et al. (2003) Influence of extensive muscle injury on fracture healing in rat tibia. J Orthop Trauma. 17(6): 430–5

    Article  PubMed  Google Scholar 

  313. Lisignoli G et al. (2001) Basic fibroblast growth factor enhances in vitro mineralization of rat bone marrow stromal cells grown on non-woven hyaluronic acid based polymer scaffold. Biomaterials. 22(15): 2095–105

    Article  CAS  PubMed  Google Scholar 

  314. Kato T et al. (1998) Single local injection of recombinant fibroblast growth factor-2 stimulates healing of segmental bone defects in rabbits. J Orthop Res. 16(6): 654–9

    Article  CAS  PubMed  Google Scholar 

  315. Zellin G, Linde A (2000) Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo. Bone. 26(2): 161–8

    Article  CAS  PubMed  Google Scholar 

  316. Radomsky ML et al. (1999) Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res. 17(4): 607–14

    Article  CAS  PubMed  Google Scholar 

  317. Kawaguchi H et al. (2007) Local application of recombinant human fibroblast growth factor-2 on bone repair: A dose–escalation prospective trial on patients with osteotomy. Journal of Orthopaedic Research. 25(4): 480–487

    Article  CAS  PubMed  Google Scholar 

  318. Solchaga LA et al. (2005) FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. Journal of Cellular Physiology. 203(2): 398–409

    Article  CAS  PubMed  Google Scholar 

  319. Chiou M, Xu Y, Longaker MT (2006) Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells. Biochemical and Biophysical Research Communications. 343(2): 644–652

    Article  CAS  PubMed  Google Scholar 

  320. Goetsch SC et al. (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics. 14(3): 261–71

    Article  CAS  PubMed  Google Scholar 

  321. Banu J, Wang L, Kalu DN (2003) Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles. Calcif Tissue Int. 73(2): 196–201

    Article  CAS  PubMed  Google Scholar 

  322. Alzghoul MB (2004) Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo. The FASEB Journal

    Google Scholar 

  323. Wessner B et al. (2012) Einfluss der Dauer wintersportlicher Aktivität vor einer Bandverletzung auf die Expression von COL1A1, COL3A1, TGF-b1 und CTGF im Sehnengewebe, in Medizinische Universität Wien. Institut für Sportwissenschaft und Universitätssport: Wien

    Google Scholar 

  324. Erlebacher A et al. (1998) Osteoblastic responses to TGF-beta during bone remodeling. Mol Biol Cell. 9(7): 1903–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Filvaroff E et al. (1999) Inhibition of TGF-beta receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development. 126(19): 4267–79

    CAS  PubMed  Google Scholar 

  326. Tang Y et al. (2009) TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature Medicine. 15(7): 757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Bailey DuBose K, Zayzafoon M, Murphy-Ullrich JE (2012) Thrombospondin-1 inhibits osteogenic differentiation of human mesenchymal stem cells through latent TGF-β activation. Biochemical and Biophysical Research Communications. 422(3): 488–493

    Article  CAS  PubMed  Google Scholar 

  328. Alliston T (2006) TGF-beta regulation of osteoblast differentiation and bone matrix properties. J Musculoskelet Neuronal Interact. 6(4): 349–50

    CAS  PubMed  Google Scholar 

  329. Mohammad KS et al. (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PLoS ONE. 4(4): e5275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Geiser AG et al. (1998) Decreased bone mass and bone elasticity in mice lacking the transforming growth factor-beta1 gene. Bone. 23(2): 87–93

    Article  CAS  PubMed  Google Scholar 

  331. Bismar R et al. (1999) Transforming growth factor beta (TGF-beta) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-beta in human bone matrix in vivo. Bone. 24(6): 565–9

    Article  CAS  PubMed  Google Scholar 

  332. Khosla S et al. (2012) Benefits and Risks of Bisphosphonate Therapy for Osteoporosis. Journal of Clinical Endocrinology & Metabolism. 97(7): 2272–2282

    Article  CAS  Google Scholar 

  333. Borton AJ et al. (2001) The loss of Smad3 results in a lower rate of bone formation and osteopenia through dysregulation of osteoblast differentiation and apoptosis. J Bone Miner Res. 16(10): 1754–64

    Article  CAS  PubMed  Google Scholar 

  334. Lieb E et al. (2004) Effects of transforming growth factor beta1 on bonelike tissue formation in three-dimensional cell culture. II: Osteoblastic differentiation. Tissue Eng. 10(9-10): 1414–25

    CAS  PubMed  Google Scholar 

  335. Atfi A, Baron R (2010) PTH battles TGF-beta in bone. Nat Cell Biol. 12(3): 205–7

    Article  CAS  PubMed  Google Scholar 

  336. Schmidmaier G et al. (2003) Synergistic effect of IGF-I and TGF-beta1 on fracture healing in rats: single versus combined application of IGF-I and TGF-beta1. Acta Orthop Scand. 74(5): 604–10

    Article  PubMed  Google Scholar 

  337. Liang H et al. (1999) Bone anabolic effects of basic fibroblast growth factor in ovariectomized rats. Endocrinology; 140(12): 5780–8

    Article  CAS  PubMed  Google Scholar 

  338. Fowlkes JL et al. (2006) Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res. 21(9): 1359–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Moya ML et al. (2010) The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials. 31(10): 2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Reid LR et al. (1990) Leukemia inhibitory factor: a novel bone-active cytokine. Endocrinology. 126(3): 1416–20

    Article  CAS  PubMed  Google Scholar 

  341. Dazai S et al. (2000) Leukemia inhibitory factor enhances bone formation in calvarial bone defect. J Craniofac Surg. 11(6): 513–20

    Article  CAS  PubMed  Google Scholar 

  342. Malaval L, Aubin JE (2001) Biphasic effects of leukemia inhibitory factor on osteoblastic differentiation. J Cell Biochem Suppl. Suppl 36: 63–70

    Article  Google Scholar 

  343. Trippel SB (1997) Growth factors as therapeutic agents. Instr Course Lect. 46: 473–6

    CAS  PubMed  Google Scholar 

  344. Andrew JG et al. (1995) Platelet-derived growth factor expression in normally healing human fractures. Bone. 16(4): 455–60

    CAS  PubMed  Google Scholar 

  345. Schmidt M, Chen E, Lynch S (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis and Cartilage. 14(5): 403–412

    Article  CAS  PubMed  Google Scholar 

  346. Canalis E, McCarthy TL, Centrella M (1989) Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol. 140(3): 530–7

    Article  CAS  PubMed  Google Scholar 

  347. Nash TJ et al. (1994) Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone. 15(2): 203–8

    Article  CAS  PubMed  Google Scholar 

  348. Heckman JD et al. (1991) The use of bone morphogenetic protein in the treatment of non-union in a canine model. J Bone Joint Surg Am. 73(5): 750–64

    Article  CAS  PubMed  Google Scholar 

  349. Angle SR et al. (2012) Healing of rat femoral segmental defect with bone morphogenetic protein-2: a dose response study. J Musculoskelet Neuronal Interact. 12(1): 28–37

    CAS  PubMed  Google Scholar 

  350. Tazaki J et al. (2009) BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate. Biomed Mater Eng. 19(2-3): 141–6

    CAS  PubMed  Google Scholar 

  351. van den Dolder J et al. (2003) Observations on the effect of BMP-2 on rat bone marrow cells cultured on titanium substrates of different roughness. Biomaterials. 24(11): 1853–60

    Article  PubMed  CAS  Google Scholar 

  352. Mason JM et al. (1998) Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair. Gene Ther. 5(8): 1098–104

    Article  CAS  PubMed  Google Scholar 

  353. Riew KD et al. (1998) Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int. 63(4): 357–60

    Article  CAS  PubMed  Google Scholar 

  354. Gazit D et al. (1999) Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med. 1(2): 121–33

    Article  CAS  PubMed  Google Scholar 

  355. Lou J et al. (1999) Gene therapy: adenovirus-mediated human bone morphogenetic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo. J Orthop Res. 17(1): 43–50

    Article  CAS  PubMed  Google Scholar 

  356. Krebsbach PH et al. (2000) Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther. 11(8): 1201–10

    Article  CAS  PubMed  Google Scholar 

  357. Franceschi RTet al. (2000) Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem. 78(3): 476–86

    Article  CAS  PubMed  Google Scholar 

  358. Okubo Y et al. (2000) Osteoinduction by Bone Morphogenetic Protein-2 via Adenoviral Vector under Transient Immunosuppression. Biochemical and Biophysical Research Communications. 267(1): 382–387

    Article  CAS  PubMed  Google Scholar 

  359. Sandhu H et al. (2001) Demineralized bone matrix, bone morphogenetic proteins, and animal models of spine fusion: an overview. European Spine Journal. 10(0): S122–S131

    Article  Google Scholar 

  360. Lee SJ (2001) Regulation of myostatin activity and muscle growth. Proceedings of the National Academy of Sciences. 98(16): 9306–9311

    Article  CAS  Google Scholar 

  361. Varady P et al. (2001) Morphologic analysis of BMP-9 gene therapy-induced osteogenesis. Hum Gene Ther. 12(6): 697–710

    Article  CAS  PubMed  Google Scholar 

  362. Kang Q et al. (2004) Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 11(17): 1312–20

    Article  CAS  PubMed  Google Scholar 

  363. Cheng H (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 85-A(8): 1544–52

    Article  PubMed  Google Scholar 

  364. Peng Y et al. (2003) Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. Journal of Cellular Biochemistry. 90(6): 1149–1165

    Article  CAS  PubMed  Google Scholar 

  365. Peng Y (2004) Inhibitor of DNA Binding/Differentiation Helix-Loop-Helix Proteins Mediate Bone Morphogenetic Protein-induced Osteoblast Differentiation of Mesenchymal Stem Cells. Journal of Biological Chemistry. 279(31): 32941–32949

    Article  CAS  PubMed  Google Scholar 

  366. Luo Q (2004) Connective Tissue Growth Factor (CTGF) Is Regulated by Wnt and Bone Morphogenetic Proteins Signaling in Osteoblast Differentiation of Mesenchymal Stem Cells. Journal of Biological Chemistry. 279(53): 55958–55968

    Article  CAS  PubMed  Google Scholar 

  367. Smith DM et al. (2012) Precise control of osteogenesis for craniofacial defect repair: the role of direct osteoprogenitor contact in BMP-2-based bioprinting. Ann Plast Surg. 69(4): 485–8

    Article  CAS  PubMed  Google Scholar 

  368. Jung RE et al. (2009) A randomized-controlled clinical trial evaluating clinical and radiological outcomes after 3 and 5 years of dental implants placed in bone regenerated by means of GBR techniques with or without the addition of BMP-2. Clin Oral Implants Res. 20(7): 660–6

    Article  PubMed  Google Scholar 

  369. Bodde EW et al. (2008) The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants in rats. J Biomed Mater Res A. 87(3): 780–91

    Article  PubMed  CAS  Google Scholar 

  370. Shields LB et al. (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976). 31(5): 542–7

    Article  Google Scholar 

  371. Grgurevic L et al. (2011) Bone morphogenetic protein (BMP)1-3 enhances bone repair. Biochem Biophys Res Commun. 408(1): 25–31

    Article  CAS  PubMed  Google Scholar 

  372. Kakagia DD et al. (2007) Synergistic action of protease-modulating matrix and autologous growth factors in healing of diabetic foot ulcers. A prospective randomized trial. J Diabetes Complications. 21(6): 387–91

    Article  PubMed  Google Scholar 

  373. Chang J et al. (1998) Molecular studies in flexor tendon wound healing: the role of basic fibroblast growth factor gene expression. J Hand Surg Am. 23(6): 1052–8

    Article  CAS  PubMed  Google Scholar 

  374. Cool S et al. (2003) Temporal expression of fibroblast growth factor receptors during primary ligament repair. Knee Surgery, Sports Traumatology, Arthroscopy. 12(5)

    Google Scholar 

  375. Chan BP et al. (2000) Effects of basic fibroblast growth factor (bFGF) on early stages of tendon healing: a rat patellar tendon model. Acta Orthop Scand. 71(5): 513–8

    Article  CAS  PubMed  Google Scholar 

  376. Kobayashi D et al. (1997) Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 5(3): 189–94

    Article  CAS  PubMed  Google Scholar 

  377. DesRosiers EA, Yahia L, Rivard CH (1996) Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res. 14(2): 200–8

    Article  CAS  PubMed  Google Scholar 

  378. Abrahamsson SO, Lohmander S (1996) Differential effects of insulin-like growth factor-I on matrix and DNA synthesis in various regions and types of rabbit tendons. J Orthop Res. 14(3): 370–6

    Article  CAS  PubMed  Google Scholar 

  379. Murphy DJ, Nixon AJ (1997) Biochemical and site-specific effects of insulin-like growth factor I on intrinsic tenocyte activity in equine flexor tendons. Am J Vet Res. 58(1): 103–9

    CAS  PubMed  Google Scholar 

  380. Steinert A et al. (2008) In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament. Biomaterials. 29(7): 904–916

    Article  CAS  PubMed  Google Scholar 

  381. Hansen M et al. (2013) Local administration of insulin-like growth factor-I (IGF-I) stimulates tendon collagen synthesis in humans. Scand J Med Sci Sports. 23(5): 614–9

    CAS  PubMed  Google Scholar 

  382. Tsuzaki M et al. (2000) Insulin-like growth factor-I is expressed by avian flexor tendon cells. J Orthop Res. 18(4): 546–56

    Article  CAS  PubMed  Google Scholar 

  383. Kurtz CA et al. (1999) Insulin-like growth factor I accelerates functional recovery from Achilles tendon injury in a rat model. Am J Sports Med. 27(3): 363–9

    Article  CAS  PubMed  Google Scholar 

  384. Olesen JL et al. (2007) Exercise-dependent IGF-I, IGFBPs, and type I collagen changes in human peritendinous connective tissue determined by microdialysis. J Appl Physiol (1985). 102(1): 214–20

    Article  CAS  Google Scholar 

  385. Anaguchi Y et al. (2005) The effect of transforming growth factor-beta on mechanical properties of the fibrous tissue regenerated in the patellar tendon after resecting the central portion. Clinical Biomechanics. 20(9): 959–965

    Article  PubMed  Google Scholar 

  386. Kondo E (2005) Effects of Administration of Exogenous Growth Factors on Biomechanical Properties of the Elongation-type Anterior Cruciate Ligament Injury With Partial Laceration. American Journal of Sports Medicine. 33(2): 188–196

    Article  PubMed  Google Scholar 

  387. Paxton JZ, Grover LM, Baar K (2010) Engineering anIn VitroModel of a Functional Ligament from Bone to Bone. Tissue Engineering Part A. 16(11): 3515–3525

    Article  CAS  PubMed  Google Scholar 

  388. Sarrazy V et al. (2011) Mechanisms of pathological scarring: Role of myofibroblasts and current developments. Wound Repair and Regeneration. 19: s10–s15

    Article  Google Scholar 

  389. Chen SJ (2006) The Early-Immediate Gene EGR-1 Is Induced by Transforming Growth Factor-beta and Mediates Stimulation of Collagen Gene Expression. Journal of Biological Chemistry. 281(30): 21183–21197

    Article  CAS  PubMed  Google Scholar 

  390. Lejard V et al. (2011) EGR1 and EGR2 Involvement in Vertebrate Tendon Differentiation. Journal of Biological Chemistry. 286(7): 5855–5867

    Article  CAS  PubMed  Google Scholar 

  391. Hagerty P et al. (2012) The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials. 33(27): 6355–6361

    Article  CAS  PubMed  Google Scholar 

  392. Mendias CL, Bakhurin KI, Faulkner JA (2008) Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proceedings of the National Academy of Sciences. 105(1): 388–393

    Article  CAS  Google Scholar 

  393. Mikic B et al. (2001) GDF-5 deficiency in mice alters the ultrastructure, mechanical properties and composition of the Achilles tendon. J Orthop Res. 19(3): 365–71

    Article  CAS  PubMed  Google Scholar 

  394. Wolfman NM et al. (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest. 100(2): 321–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Forslund C et al. (2003) A comparative dose-response study of cartilage-derived morphogenetic protein (CDMP)-1, -2 and -3 for tendon healing in rats. J Orthop Res. 21(4): 617–21

    Article  CAS  PubMed  Google Scholar 

  396. Bogdanovich S (2005) Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. The FASEB Journal. 19(6): 543–549

    Article  CAS  PubMed  Google Scholar 

  397. Mendias CL et al. (2006) Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol (1985). 101(3): 898–905

    Article  CAS  Google Scholar 

  398. Griffiths RI (1991) Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 436: 219–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Zhang F et al. (2003) Effect of vascular endothelial growth factor on rat Achilles tendon healing. Plast Reconstr Surg. 112(6): 1613–9

    Article  PubMed  Google Scholar 

  400. Batten ML et al. (1996) Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res. 14(5): 736–41

    Article  CAS  PubMed  Google Scholar 

  401. Masuki H et al. (2016) Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF). Int J Implant Dent. 2(1): 19

    Article  PubMed  PubMed Central  Google Scholar 

  402. Engebretsen L, Steffen K (2010) To PRP or not? British Journal of Sports Medicine. 44(15): 1071–1071

    Article  PubMed  Google Scholar 

  403. Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants. 14(4): 529–35

    CAS  PubMed  Google Scholar 

  404. Anitua E et al. (2007) The potential impact of the preparation rich in growth factors (PRGF) in different medical fields☆. Biomaterials. 28(31): 4551–4560

    Article  CAS  PubMed  Google Scholar 

  405. Marx RE (2004) Platelet-rich plasma: evidence to support its use. Journal of Oral and Maxillofacial Surgery. 62(4): 489–496

    Article  PubMed  Google Scholar 

  406. Cervelli V et al. (2009) Application of platelet-rich plasma in plastic surgery: clinical and in vitro evaluation. Tissue Eng Part C Methods. 15(4): 625–34

    Article  CAS  PubMed  Google Scholar 

  407. Kazakos K et al. (2009) The use of autologous PRP gel as an aid in the management of acute trauma wounds. Injury. 40(8): 801–805

    Article  CAS  PubMed  Google Scholar 

  408. Mei-Dan O et al. (2010) Early return to play following complete rupture of the medial collateral ligament of the elbow using preparation rich in growth factors: A case report. Journal of Shoulder and Elbow Surgery. 19(5): e1–e5

    Article  PubMed  Google Scholar 

  409. Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends in Biotechnology. 27(3): 158–167

    Article  CAS  Google Scholar 

  410. Paoloni J et al. (2011) Platelet-rich plasma treatment for ligament and tendon injuries.Clin J Sport Med. 21(1): 37–45

    Google Scholar 

  411. Marx RE (2001) Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 10(4): 225–8

    Article  CAS  PubMed  Google Scholar 

  412. Engebretsen L et al. (2010) IOC consensus paper on the use of platelet-rich plasma in sports medicine. British Journal of Sports Medicine. 44(15): 1072–1081

    Article  PubMed  Google Scholar 

  413. McCarrel T, Fortier L (2009) Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. Journal of Orthopaedic Research. 27(8): 1033–1042

    Article  CAS  PubMed  Google Scholar 

  414. Lopez-Vidriero E et al. (2010) The Use of Platelet-Rich Plasma in Arthroscopy and Sports Medicine: Optimizing the Healing Environment. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 26(2): 269–278

    Article  Google Scholar 

  415. Alsousou J et al. (2009) The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 91(8): 987–96

    Article  CAS  PubMed  Google Scholar 

  416. Foster TE et al. (2009) Platelet-Rich Plasma: From Basic Science to Clinical Applications. The American Journal of Sports Medicine. 37(11): 2259–2272

    Article  PubMed  Google Scholar 

  417. Murphy G et al. (1980) The latent collagenase and gelatinase of human polymorphonuclear neutrophil leucocytes. Biochem J. 192(2): 517–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Anitua E et al. (2004) Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 91(1): 4–15

    CAS  PubMed  Google Scholar 

  419. SaNchez M et al. (2003) Plasma Rich in Growth Factors to Treat an Articular Cartilage Avulsion: A Case Report. Medicine & Science in Sports & Exercise. 35(10): 1648–1652

    Article  Google Scholar 

  420. Frechette JP, Martineau I, Gagnon G (2005) Platelet-rich Plasmas: Growth Factor Content and Roles in Wound Healing. Journal of Dental Research. 84(5): 434–439

    Article  CAS  PubMed  Google Scholar 

  421. Kajikawa Y et al. (2008) Platelet-rich plasma enhances the initial mobilization of circulation-derived cells for tendon healing. Journal of Cellular Physiology. 215(3): 837–845

    Article  CAS  PubMed  Google Scholar 

  422. Anitua E, Alkhraisat MH, Orive G (2012) Perspectives and challenges in regenerative medicine using plasma rich in growth factors. Journal of Controlled Release. 157(1): 29–38

    Article  CAS  PubMed  Google Scholar 

  423. Anitua E et al. (2008) Delivering growth factors for therapeutics. Trends in Pharmacological Sciences. 29(1): 37–41

    Article  CAS  PubMed  Google Scholar 

  424. Reider B (2009) Proceed With Caution. The American Journal of Sports Medicine. 37(11): 2099–2101

    Article  PubMed  Google Scholar 

  425. Peerbooms JC et al. (2010) Positive Effect of an Autologous Platelet Concentrate in Lateral Epicondylitis in a Double-Blind Randomized Controlled Trial: Platelet-Rich Plasma Versus Corticosteroid Injection With a 1-Year Follow-u The American Journal of Sports Medicine. 38(2): 255–262

    Article  PubMed  Google Scholar 

  426. de Vos RJ et al. (2010) Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 303(2): 144–9

    Article  PubMed  Google Scholar 

  427. Castricini R et al. (2011) Platelet-Rich Plasma Augmentation for Arthroscopic Rotator Cuff Repair: A Randomized Controlled Trial. The American Journal of Sports Medicine. 39(2): 258–265

    Article  PubMed  Google Scholar 

  428. Schepull T et al. (2011) Autologous Platelets Have No Effect on the Healing of Human Achilles Tendon Ruptures: A Randomized Single-Blind Study. The American Journal of Sports Medicine. 39(1): 38–47

    Article  PubMed  Google Scholar 

  429. Wright-Carpenter T et al. (2004) Treatment of muscle injuries by local administration of autologous conditioned serum: a pilot study on sportsmen with muscle strains. Int J Sports Med. 25(8): 588–93

    Article  CAS  PubMed  Google Scholar 

  430. Sánchez M et al. (2014) Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention. Injury. 45 Suppl 4: 7–14

    Article  Google Scholar 

  431. Hamilton BH, Best TM. (2010) Platelet-enriched plasma and muscle strain injuries: challenges imposed by the burden of proof. Clin J Sport Med. 21(1): 31–6

    Article  Google Scholar 

  432. Loo WL et al. (2009) Plasma rich in growth factors to treat adductor longus tear. Ann Acad Med Singapore. 38(8): 733–4

    PubMed  Google Scholar 

  433. Anitua E et al. (2005) Autologous preparations rich in growth factors promote proliferation and induce VEGF and HGF production by human tendon cells in culture. J Orthop Res. 23(2): 281–6

    Article  CAS  PubMed  Google Scholar 

  434. Anitua E et al. (2006) Autologous fibrin matrices: a potential source of biological mediators that modulate tendon cell activities. J Biomed Mater Res A. 77(2): 285–93

    Article  PubMed  CAS  Google Scholar 

  435. Anitua E et al. (2006) New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 24(5): 227–34

    Article  CAS  PubMed  Google Scholar 

  436. Letson AK, Dahners LE (1994) The effect of combinations of growth factors on ligament healing. Clin Orthop Relat Res, 1994(308): 207–12

    Google Scholar 

  437. Hoppe S et al. (2012) Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. Journal of Shoulder and Elbow Surgery

    Google Scholar 

  438. St Pierre P et al. (1995) Tendon-healing to cortical bone compared with healing to a cancellous trough. A biomechanical and histological evaluation in goats. J Bone Joint Surg Am. 77(12): 1858–66

    Article  CAS  PubMed  Google Scholar 

  439. Lyras DN et al. (2009) The effect of platelet-rich plasma gel in the early phase of patellar tendon healing. Archives of Orthopaedic and Trauma Surgery. 129(11): 1577–1582

    Article  PubMed  Google Scholar 

  440. Joshi SM et al. (2009) Collagen-Platelet Composite Enhances Biomechanical and Histologic Healing of the Porcine Anterior Cruciate Ligament. The American Journal of Sports Medicine. 37(12): 2401–2410

    Article  PubMed  PubMed Central  Google Scholar 

  441. Murray MM et al. (2007) Enhanced histologic repair in a central wound in the anterior cruciate ligament with a collagen–platelet-rich plasma scaffold. Journal of Orthopaedic Research. 25(8): 1007–1017

    Article  CAS  PubMed  Google Scholar 

  442. Murray MM et al. (2007) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. Journal of Orthopaedic Research. 25(1): 81–91

    Article  PubMed  Google Scholar 

  443. Murray MM et al. (2009) Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: An in vivo study. Journal of Orthopaedic Research. 27(5): 639–645

    Article  PubMed  PubMed Central  Google Scholar 

  444. Aspenberg P, Virchenko O (2004) Platelet concentrate injection improves Achilles tendon repair in rats. Acta Orthop Scand. 75(1): 93–9

    Article  PubMed  Google Scholar 

  445. Chan BP et al. (2006) Supplementation-time dependence of growth factors in promoting tendon healing. Clin Orthop Relat Res. 448: 240–7

    Article  CAS  PubMed  Google Scholar 

  446. Gruber R et al. (2002) Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res. 13(5): 529–35

    Article  PubMed  Google Scholar 

  447. Weibrich G et al. (2002) Growth stimulation of human osteoblast-like cells by thrombocyte concentrates in vitro. Mund Kiefer Gesichtschir. 6(3): 168–74

    Article  CAS  PubMed  Google Scholar 

  448. Han, B., The Effect of Thrombin Activation of Platelet-Rich Plasma on Demineralized Bone Matrix Osteoinductivity. The Journal of Bone & Joint Surgery (American), 2009. 91(6): 1459

    Article  Google Scholar 

  449. Akeda K et al. (2006) Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthritis and Cartilage. 14(12): 1272–1280

    Article  CAS  PubMed  Google Scholar 

  450. Ishida K et al. (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng. 13(5): 1103–12

    Article  CAS  PubMed  Google Scholar 

  451. Maffulli N, Del Buono A (2012) Platelet plasma rich products in musculoskeletal medicine: Any evidence? The Surgeon. 10(3): 148–150

    Article  PubMed  Google Scholar 

  452. Orchard JW (2008) The early management of muscle strains in the elite athlete: best practice in a world with a limited evidence basis. British Journal of Sports Medicine. 42(3): 158–159

    Article  PubMed  Google Scholar 

  453. Teller P, White TK (2009) The physiology of wound healing: injury through maturation. Surg Clin North Am. 89(3): 599–610

    Article  PubMed  Google Scholar 

  454. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med. 341(10): 738–46

    Article  CAS  PubMed  Google Scholar 

  455. Schäffer M, Becker HD (1999) Immunregulation der Wundheilung. Chirurg. 70: 897–908

    Article  PubMed  Google Scholar 

  456. Kujath P, Michelsen A (2008) Wounds – from physiology to wound dressing. Dtsch Arztebl Int. 105(13): 239–48

    PubMed  PubMed Central  Google Scholar 

  457. Diegelmann RF (1997) Cellular and biochemical aspects of normal and abnormal wound healing: an overview. J Urol. 157(1): 298–302

    Article  CAS  PubMed  Google Scholar 

  458. Broughton G 2nd, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg. 117(7 Suppl): 12S–34S

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Bachl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Bachl, N., Lorenz, C., Geoffrey, G. (2018). Wachstumsfaktoren unter besonderer Berücksichtigung des muskuloskelettalen Systems. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics