Skip to main content

Mechanische Belastung und Bindegewebe

  • Chapter
  • First Online:
  • 11k Accesses

Zusammenfassung

Anpassungen des Bindegewebes an mechanische Belastungen in Muskeln, Sehnen, Bändern oder Knochen führen zu einer gesteigerten Synthese und zum Umsatz von Matrixproteinen, einschließlich des Kollagens. Regelmäßiges Belasten des Gewebes, wie zum Beispiel durch körperliches Training, führt zu einem gesteigerten Umsatz von Kollagen und einer Netzkollagensynthese und steht im Zusammenhang mit einer Anpassung der mechanischen Eigenschaften des Gewebes, die potenziell zu einem belastungsresistenteren Gewebe führt. Die Anpassungszeit des Bindegewebes an chronische Belastung ist verglichen mit jener von kontraktilen Elementen der Skelettmuskulatur oder des Myokards länger.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Appell H-J, Stang-Voss C, Battermann N (2008) Funktionelle Anatomie Grundlagen sportlicher Leistung und Bewegung. 4., vollst. überarb. Aufl., Heidelberg: Springer Medizin-Verl. XII, 179 S.

    Google Scholar 

  2. Brinckmann JR, Notbohm H, Müller PK (2005) Collagen: primer in structure, processing and assembly. Berlin: Springer. 252 p

    Google Scholar 

  3. Arai H et al. (1997) A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res. 12(6): p. 915–21

    Article  CAS  PubMed  Google Scholar 

  4. Kovanen V (1989) Effects of ageing and physical training on rat skeletal muscle. An experimental study on the properties of collagen, laminin, and fibre types in muscles serving different functions. Acta Physiol Scand Suppl. 577: p. 1–56

    CAS  PubMed  Google Scholar 

  5. Magnusson SP, Langberg H, Kjaer M (2010) The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 6(5): p. 262–8

    Article  PubMed  Google Scholar 

  6. Heinemeier KM et al. (2013) Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb (14)C. FASEB J. 27(5): p. 2074–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han Y et al. (2004) Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci U S A. 101(47): p. 16689–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marotti G (1996) The structure of bone tissues and the cellular control of their deposition. Ital J Anat Embryol. 101(4): p. 25–79

    CAS  PubMed  Google Scholar 

  9. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res. 6(6): p. 886–96

    Article  CAS  PubMed  Google Scholar 

  10. Holzer G et al. (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res. 24(3): p. 468–74

    Article  PubMed  Google Scholar 

  11. Orwoll ES et al. (2003) The effect of teriparatide [human parathyroid hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 18(1): p. 9–17

    Article  CAS  PubMed  Google Scholar 

  12. Rho JY (1996) An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics. 34(8): p. 777–83

    Article  CAS  PubMed  Google Scholar 

  13. Wainwright SA (1982) Mechanical Design in Organisms. Princeton University Press. 423

    Google Scholar 

  14. Currey J (2001) Sacrificial bonds heal bone. Nature. 414(6865): p. 699

    Article  CAS  PubMed  Google Scholar 

  15. Newitt DC et al. (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int. 13(1): p. 6–17

    Article  CAS  PubMed  Google Scholar 

  16. Bailey AJ et al. (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int. 65(3): p. 203–10

    Article  CAS  PubMed  Google Scholar 

  17. Banse, X, Devogelaer JP, Grynpas M (2002) Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone. 30(6): p. 829–35

    Article  CAS  PubMed  Google Scholar 

  18. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int. 17(3): p. 319–36

    Article  CAS  PubMed  Google Scholar 

  19. Frost HM (1965) An analysis of the relative complexity of cell system dynamics in bone. Henry Ford Hosp Med J. 13(3): p. 271–83

    CAS  PubMed  Google Scholar 

  20. Zorbas YG, Federenko YF, Naexu KA (1994) Urinary excretion of microelements in endurance-trained volunteers during restriction of muscular activity and chronic rehydration. Biol Trace Elem Res. 40(3): p. 189–202

    Article  CAS  PubMed  Google Scholar 

  21. Oxlund H et al. (1998) Growth hormone and mild exercise in combination markedly enhance cortical bone formation and strength in old rats. Endocrinology. 139(4): p. 1899–904

    Article  CAS  PubMed  Google Scholar 

  22. Krolner B, Toft B (1983) Vertebral bone loss: an unheeded side effect of therapeutic bed rest. Clin Sci (Lond). 64(5): p. 537–40

    Article  CAS  Google Scholar 

  23. Kannus P et al. (1994) The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone. 15(3): p. 279–84

    Article  CAS  PubMed  Google Scholar 

  24. Heinonen A et al. (1999) Good maintenance of high-impact activity-induced bone gain by voluntary, unsupervised exercises: An 8-month follow-up of a randomized controlled trial. J Bone Miner Res. 14(1): p. 125–8

    Article  CAS  PubMed  Google Scholar 

  25. Haapasalo H et al. (1996) Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res. 11(6): p. 864–72

    Article  CAS  PubMed  Google Scholar 

  26. McClung JP, Karl JP (2010) Vitamin D and stress fracture: the contribution of vitamin D receptor gene polymorphisms. Nutr Rev. 68(6): p. 365–9

    Article  PubMed  Google Scholar 

  27. Morrison NA et al. (1994) Prediction of bone density from vitamin D receptor alleles. Nature. 367(6460): p. 284–7

    Article  CAS  PubMed  Google Scholar 

  28. Moore DD et al. (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev. 58 (4): p. 742–59

    Article  CAS  PubMed  Google Scholar 

  29. Walters MR (1992) Newly identified actions of the vitamin D endocrine system. Endocr Rev. 13(4): p. 719–64

    CAS  PubMed  Google Scholar 

  30. Labuda M et al. (1992) Two hereditary defects related to vitamin D metabolism map to the same region of human chromosome 12q13-14. J Bone Miner Res. 7(12): p. 1447–53

    Article  CAS  PubMed  Google Scholar 

  31. Thomas T, Briot K (2013) Vitamin D: skeletal and muscular effects. Presse Med. 42(10): p. 1351–7

    Article  PubMed  Google Scholar 

  32. You L et al. (2013) New insights into the gene function of osteoporosis. Front Biosci (Landmark Ed). 18: p. 1088–97

    Article  CAS  Google Scholar 

  33. Chatzipapas C et al. (2009) Polymorphisms of the vitamin D receptor gene and stress fractures. Horm Metab Res. 41(8): p. 635–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu HJ et al. (2003) Association of the vitamin D receptor gene start codon polymorphism with vitamin D deficiency rickets. Zhonghua Er Ke Za Zhi. 41(7): p. 493–6

    PubMed  Google Scholar 

  35. Wang D et al. (2013) Vitamin D receptor Fok I polymorphism is associated with low bone mineral density in postmenopausal women: a meta-analysis focused on populations in Asian countries. Eur J Obstet Gynecol Reprod Biol. 169(2): p. 380–6

    Article  CAS  PubMed  Google Scholar 

  36. Pouresmaeili F et al. (2013) Association between Vitamin D Receptor Gene BsmI Polymorphism and Bone Mineral Density in A Population of 146 Iranian Women. Cell J. 15(1): p. 75–82

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vupputuri MR et al. (2006) Prevalence and functional significance of 25-hydroxyvitamin D deficiency and vitamin D receptor gene polymorphisms in Asian Indians. Am J Clin Nutr. 83(6): p. 1411–9

    CAS  PubMed  Google Scholar 

  38. Gong G et al. (1999) The association of bone mineral density with vitamin D receptor gene polymorphisms. Osteoporos Int. 9(1): p. 55–64

    Article  CAS  PubMed  Google Scholar 

  39. Macdonald HM et al. (2006) Large-scale population-based study shows no evidence of association between common polymorphism of the VDR gene and BMD in British women. J Bone Miner Res. 21(1): p. 151–62

    Article  CAS  PubMed  Google Scholar 

  40. Thakkinstian A et al. (2004) Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res. 19(3): p. 419–28

    Article  CAS  PubMed  Google Scholar 

  41. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem. 78: p. 929–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mann V et al. (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest. 107(7): p. 899–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Blades HZ et al. (2010) Collagen gene polymorphisms influence fracture risk and bone mass acquisition during childhood and adolescent growth. Bone. 47(5): p. 989–94

    Article  CAS  PubMed  Google Scholar 

  44. Simsek M et al. (2008) Effects of hormone replacement therapy on bone mineral density in Turkish patients with or without COL1A1 Sp1 binding site polymorphism. J Obstet Gynaecol Res. 34(1): p. 73–7

    CAS  PubMed  Google Scholar 

  45. Jin H et al. (2011) Polymorphisms in the 5' flank of COL1A1 gene and osteoporosis: meta-analysis of published studies. Osteoporos Int. 22(3): p. 911–21

    Article  CAS  PubMed  Google Scholar 

  46. Erdogan MO et al. (2011) Association of estrogen receptor alpha and collagen type I alpha 1 gene polymorphisms with bone mineral density in postmenopausal women. Osteoporos Int. 22(4): p. 1219–25

    Article  CAS  PubMed  Google Scholar 

  47. Hu WW et al. (2011) No association between polymorphisms and haplotypes of COL1A1 and COL1A2 genes and osteoporotic fracture in postmenopausal Chinese women. Acta Pharmacol Sin. 32(7): p. 947–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol. 19(8): p. 1951–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tobias JH et al. (2007) Use of clinical risk factors to identify postmenopausal women with vertebral fractures. Osteoporos Int. 18(1): p. 35–43

    Article  CAS  PubMed  Google Scholar 

  50. Wang CL et al. (2007) Association of estrogen receptor alpha gene polymorphisms with bone mineral density in Chinese women: a meta-analysis. Osteoporos Int. 18(3): p. 295–305

    Article  PubMed  CAS  Google Scholar 

  51. Nam HS et al. (2005) Association of estrogen receptor-alpha gene polymorphisms with bone mineral density in postmenopausal Korean women. J Bone Miner Metab. 23(1): p. 84–9

    Article  CAS  PubMed  Google Scholar 

  52. Mitra S, Desai M, Khatkhatay MI (2006) Association of estrogen receptor alpha gene polymorphisms with bone mineral density in postmenopausal Indian women. Mol Genet Metab. 87(1): p. 80–7

    Article  CAS  PubMed  Google Scholar 

  53. Bandres E et al. (2005) Association between bone mineral density and polymorphisms of the VDR, ERalpha, COL1A1 and CTR genes in Spanish postmenopausal women. J Endocrinol Invest. 28(4): p. 312–21

    Article  CAS  PubMed  Google Scholar 

  54. Gennari L et al. (2005) Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am J Epidemiol. 161(4): p. 307–20

    Article  CAS  PubMed  Google Scholar 

  55. Yamada Y et al. (2002) Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density of the femoral neck in elderly Japanese women. J Mol Med (Berl). 80(7): p. 452–60

    Article  CAS  Google Scholar 

  56. Nguyen TV, Eisman JA (2012) Genetics and the individualized prediction of fracture. Curr Osteoporos Rep. 10(3): p. 236–44

    Article  PubMed  Google Scholar 

  57. Nguyen TV, Eisman JA (2013) Genetic profiling and individualized assessment of fracture risk. Nat Rev Endocrinol. 9(3): p. 153–61

    Article  PubMed  Google Scholar 

  58. Wang H, Liu C (2012) Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int. 23(11): p. 2625–34

    Article  CAS  PubMed  Google Scholar 

  59. Cauley JA et al. (1999) Apolipoprotein E polymorphism: A new genetic marker of hip fracture risk – The Study of Osteoporotic Fractures. J Bone Miner Res. 14(7): p. 1175–81

    Article  CAS  PubMed  Google Scholar 

  60. Efstathiadou Z et al. (2004) Apolipoprotein E polymorphism is not associated with spinal bone mineral density in peri- and postmenopausal Greek women. Maturitas. 48(3): p. 259–64

    Article  CAS  PubMed  Google Scholar 

  61. Peter I et al. (2011) Associations of APOE gene polymorphisms with bone mineral density and fracture risk: a meta-analysis. Osteoporos Int. 22(4): p. 1199–209

    Article  CAS  PubMed  Google Scholar 

  62. Schoofs MW et al. (2004) ApoE gene polymorphisms, BMD, and fracture risk in elderly men and women: the Rotterdam study. J Bone Miner Res. 19(9): p. 1490–6

    Article  CAS  PubMed  Google Scholar 

  63. Sennels HP et al. (2003) Association between polymorphisms of apolipoprotein E, bone mineral density of the lower forearm, quantitative ultrasound of the calcaneus and osteoporotic fractures in postmenopausal women with hip or lower forearm fracture. Scand J Clin Lab Invest. 63(4): p. 247–58

    Article  CAS  PubMed  Google Scholar 

  64. Song JF et al. (2013) Association between single nucleotide polymorphisms of the osteoprotegerin gene and postmenopausal osteoporosis in Chinese women. Genet Mol Res. 12(3): p. 3279–85

    Article  CAS  PubMed  Google Scholar 

  65. Guimaraes JM et al. (2013) Polymorphisms in BMP4 and FGFR1 genes are associated with fracture non-union. J Orthop Res. 31(12): p. 1971–9

    Article  CAS  PubMed  Google Scholar 

  66. Kumar J et al. (2011) LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone. 49(3): p. 343–8

    Article  CAS  PubMed  Google Scholar 

  67. Medici M et al. (2006) BMP-2 gene polymorphisms and osteoporosis: the Rotterdam Study. J Bone Miner Res. 21(6): p. 845–54

    Article  CAS  PubMed  Google Scholar 

  68. Wang H et al. (2008) Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur Spine J. 17(7): p. 956–64

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ferrari SL, Deutsch S, Antonarakis SE (2005) Pathogenic mutations and polymorphisms in the lipoprotein receptor-related protein 5 reveal a new biological pathway for the control of bone mass. Curr Opin Lipidol. 16(2): p. 207–14

    Article  CAS  PubMed  Google Scholar 

  70. Kubota T, Ozono K (2013) Wnt signaling molecules related to osteoporosis. Clin Calcium, 2013. 23(6): p. 855–60

    CAS  PubMed  Google Scholar 

  71. Trivedi R, Goswami R, Chattopadhyay N (2010) Investigational anabolic therapies for osteoporosis. Expert Opin Investig Drugs. 19(8): p. 995–1005

    Article  CAS  PubMed  Google Scholar 

  72. Bhosale AM, Richardson JB (2008) Articular cartilage: structure, injuries and review of management. Br Med Bull. 87: p. 77–95

    Article  PubMed  Google Scholar 

  73. Chen Q et al. (1999) Assembly of a novel cartilage matrix protein filamentous network: molecular basis of differential requirement of von Willebrand factor A domains. Mol Biol Cell. 10(7): p. 2149–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tittel K (2003) Beschreibende und funktionelle Anatomie des Menschen. 14., völlig überarb. und erw. Aufl ed. München u. a.: Urban & Fischer. XI, 436 S.

    Google Scholar 

  75. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect. 47: p. 487–504

    CAS  PubMed  Google Scholar 

  76. Rasanen T, Messner K (1996) Regional variations of indentation stiffness and thickness of normal rabbit knee articular cartilage. J Biomed Mater Res. 31(4): p. 519–24

    Article  CAS  PubMed  Google Scholar 

  77. Tammi M et al. (1988) Effects of joint loading on articular cartilage collagen metabolism: assay of procollagen prolyl 4-hydroxylase and galactosylhydroxylysyl glucosyltransferase. Connect Tissue Res. 17(3): p. 199–206

    Article  CAS  PubMed  Google Scholar 

  78. Haapala J et al. (1999) Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop Relat Res. 362: p. 218–29

    Article  Google Scholar 

  79. Haapala J et al. (2000) Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization. Int J Sports Med. 21(1): p. 76–81

    Article  CAS  PubMed  Google Scholar 

  80. Aspberg A (2012) The different roles of aggrecan interaction domains. J Histochem Cytochem. 60(12): p. 987–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Watanabe H, Yamada Y, Kimata K (1998) Roles of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. J Biochem. 124(4): p. 687–93

    Article  CAS  PubMed  Google Scholar 

  82. Korenberg JR et al. (1993) Assignment of the human aggrecan gene (AGC1) to 15q26 using fluorescence in situ hybridization analysis. Genomics. 16(2): p. 546–8

    Article  CAS  PubMed  Google Scholar 

  83. Roughley P et al. (2006) The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater. 11: p. 1–7; discussion 7

    Article  CAS  PubMed  Google Scholar 

  84. Roughley PJ, Alini M, Antoniou J (2002) The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochem Soc Trans. 30(Pt 6): p. 869–74

    Article  Google Scholar 

  85. Valdes AM et al. (2007) Sex and ethnic differences in the association of ASPN, CALM1, COL2A1, COMP, and FRZB with genetic susceptibility to osteoarthritis of the knee. Arthritis Rheum. 56(1): p. 137–46

    Article  CAS  PubMed  Google Scholar 

  86. Ikeda T et al. (2002) Association analysis of single nucleotide polymorphisms in cartilage-specific collagen genes with knee and hip osteoarthritis in the Japanese population. J Bone Miner Res. 17(7): p. 1290–6

    Article  CAS  PubMed  Google Scholar 

  87. Meulenbelt I et al. (1999) Haplotype analysis of three polymorphisms of the COL2A1 gene and associations with generalised radiological osteoarthritis. Ann Hum Genet. 63(Pt 5): p. 393–400

    Article  CAS  PubMed  Google Scholar 

  88. Uitterlinden AG et al. (2000) Adjacent genes, for COL2A1 and the vitamin D receptor, are associated with separate features of radiographic osteoarthritis of the knee. Arthritis Rheum. 43(7): p. 1456–64

    Article  CAS  PubMed  Google Scholar 

  89. Baldwin CT et al. (2002) Absence of linkage or association for osteoarthritis with the vitamin D receptor/type II collagen locus: the Framingham Osteoarthritis Study. J Rheumatol. 29(1): p. 161–5

    CAS  PubMed  Google Scholar 

  90. Jakkula E et al. (2005) The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis Cartilage. 13(6): p. 497–507

    Article  CAS  PubMed  Google Scholar 

  91. Raine EV et al. (2013) Allelic expression analysis of the osteoarthritis susceptibility gene COL11A1 in human joint tissues. BMC Musculoskelet Disord. 14: p. 85

    Google Scholar 

  92. Enomoto-Iwamoto M et al. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol. 251(1): p. 142–56

    Article  CAS  PubMed  Google Scholar 

  93. Tamamura Y et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem. 280(19): p. 19185–95

    Article  CAS  PubMed  Google Scholar 

  94. Lories RJ et al. (2006) Evidence for a differential association of the Arg200Trp single-nucleotide polymorphism in FRZB with hip osteoarthritis and osteoporosis. Rheumatology (Oxford). 45(1): p. 113–4

    Article  CAS  Google Scholar 

  95. Leijten JC et al. (2012) Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum. 64(10): p. 3302–12

    Article  CAS  PubMed  Google Scholar 

  96. Iida A et al. (2006) High-resolution SNP map of ASPN, a susceptibility gene for osteoarthritis. J Hum Genet. 51(2): p. 151–4

    Article  CAS  PubMed  Google Scholar 

  97. Kizawa H et al. (2005) An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet. 37(2): p. 138–44

    Article  CAS  PubMed  Google Scholar 

  98. Mototani H et al. (2005) A functional single nucleotide polymorphism in the core promoter region of CALM1 is associated with hip osteoarthritis in Japanese. Hum Mol Genet. 14(8): p. 1009–17

    Article  CAS  PubMed  Google Scholar 

  99. Valdes AM et al. (2004) Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis Rheum. 50(8): p. 2497–507

    Article  CAS  PubMed  Google Scholar 

  100. Alexander RM (2002) Tendon elasticity and muscle function. Comp Biochem Physiol A Mol Integr Physiol. 133(4): p. 1001–11

    Article  PubMed  Google Scholar 

  101. Birch HL (2007) Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Pathol. 88(4): p. 241–8

    Article  PubMed  PubMed Central  Google Scholar 

  102. Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. J Anat. 212(3): p. 211–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Strocchi R et al. (1991) Human Achilles tendon: morphological and morphometric variations as a function of age. Foot Ankle. 12(2): p. 100–4

    Article  CAS  PubMed  Google Scholar 

  104. Frank CB (2004) Ligament structure, physiology and function. J Musculoskelet Neuronal Interact. 4(2): p. 199–201

    CAS  PubMed  Google Scholar 

  105. Fukuta S et al. (1998) Identification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol. 17(1): p. 65–73

    Article  CAS  PubMed  Google Scholar 

  106. Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 84(2): p. 649–98

    Article  CAS  PubMed  Google Scholar 

  107. Robinson PS et al. (2004) Strain-rate sensitive mechanical properties of tendon fascicles from mice with genetically engineered alterations in collagen and decorin. J Biomech Eng. 126(2): p. 252–7

    Article  PubMed  Google Scholar 

  108. Killian ML et al. (2012) The role of mechanobiology in tendon healing. J Shoulder Elbow Surg. 21(2): p. 228–37

    Article  PubMed  PubMed Central  Google Scholar 

  109. Reeves ND (2006) Adaptation of the tendon to mechanical usage. J Musculoskelet Neuronal Interact. 6(2): p. 174–80

    CAS  PubMed  Google Scholar 

  110. Savolainen J et al. (1988) Effects of denervation and immobilization on collagen synthesis in rat skeletal muscle and tendon. Am J Physiol. 254 (6Pt 2): p. R897–902

    CAS  PubMed  Google Scholar 

  111. Savolainen J et al. (1988) Collagen synthesis and proteolytic activities in rat skeletal muscles: effect of cast-immobilization in the lengthened and shortened positions. Arch Phys Med Rehabil. 69(11): p. 964–9

    CAS  PubMed  Google Scholar 

  112. Laurent GJ, Harrison NK, McAnulty RJ (1988) The regulation of collagen production in normal lung and during interstitial lung disease. Postgrad Med J. 64 Suppl 4: p. 26–34

    PubMed  Google Scholar 

  113. Miller BF et al. (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol. 567(Pt3): p. 1021–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Michna H (1984) Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons. Cell Tissue Res. 236(2): p. 465–70

    Article  CAS  PubMed  Google Scholar 

  115. Michna H, Hartmann G (1988) Hypertrophy, androgens, and tendon karyometry: functional and experimental investigations. Gegenbaurs Morphol Jahrb. 134(6): p. 903–12

    CAS  PubMed  Google Scholar 

  116. Turto H, Lindy S, Halme J (1974) Protocollagen proline hydroxylase activity in work-induced hypertrophy of rat muscle. Am J Physiol. 226(1): p. 63–5

    CAS  PubMed  Google Scholar 

  117. Langberg H, Bulow J, Kjaer M (1999) Standardized intermittent static exercise increases peritendinous blood flow in human leg. Clin Physiol. 19(1): p. 89–93

    Article  CAS  PubMed  Google Scholar 

  118. Langberg H et al. (2002) Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol. 542(Pt3): p. 985–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Street SF (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol. 114(3): p. 346–64

    Article  CAS  PubMed  Google Scholar 

  120. Khoschnau S et al. (2008) Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am J Sports Med. 36(12): p. 2432–6

    Article  PubMed  Google Scholar 

  121. Lian K et al. (2005) Type I collagen alpha1 Sp1 transcription factor binding site polymorphism is associated with reduced risk of hip osteoarthritis defined by severe joint space narrowing in elderly women. Arthritis Rheum. 52(5): p. 1431–6

    Article  CAS  PubMed  Google Scholar 

  122. Speer G et al. (2006) Myocardial infarction is associated with Spl binding site polymorphism of collagen type 1A1 gene. Acta Cardiol. 61(3): p. 321–5

    Article  PubMed  Google Scholar 

  123. Tilkeridis C et al. (2005) Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits. J Med Genet. 42(7): p. e44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Skorupski P et al. (2006) An alpha-1 chain of type I collagen Sp1-binding site polymorphism in women suffering from stress urinary incontinence. Am J Obstet Gynecol. 194(2): p. 346–50

    Article  CAS  PubMed  Google Scholar 

  125. Grant SF et al. (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet. 14(2): p. 203–5

    Article  CAS  PubMed  Google Scholar 

  126. Posthumus M et al. (2009) The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am J Sports Med. 37(11): p. 2234–40

    Article  PubMed  Google Scholar 

  127. Posthumus M et al. (2009) Investigation of the Sp1-binding site polymorphism within the COL1A1 gene in participants with Achilles tendon injuries and controls. J Sci Med Sport. 12(1): p. 184–9

    Article  PubMed  Google Scholar 

  128. Ireland D et al. (2001) Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol. 20(3): p. 159–69

    Article  CAS  PubMed  Google Scholar 

  129. de Mos M et al. (2007) Achilles tendinosis: changes in biochemical composition and collagen turnover rate. Am J Sports Med. 35(9): p. 1549–56

    Article  PubMed  Google Scholar 

  130. Collins M, Posthumus M, Schwellnus MP (2010) The COL1A1 gene and acute soft tissue ruptures. Br J Sports Med. 44(14): p. 1063–4

    Article  PubMed  Google Scholar 

  131. Collins M, Raleigh SM (2009) Genetic risk factors for musculoskeletal soft tissue injuries. Med Sport Sci. 54: p. 136–49

    Article  CAS  PubMed  Google Scholar 

  132. Bennett EP et al. (1995) Genomic cloning of the human histo-blood group ABO locus. Biochem Biophys Res Commun. 211(1): p. 347

    Article  CAS  PubMed  Google Scholar 

  133. Kannus P, Natri A (1997) Etiology and pathophysiology of tendon ruptures in sports. Scand J Med Sci Sports. 7(2): p. 107–12

    Article  CAS  PubMed  Google Scholar 

  134. Jozsa L et al. (1989) Distribution of blood groups in patients with tendon rupture. An analysis of 832 cases. J Bone Joint Surg Br. 71 (2): p. 272–4

    CAS  PubMed  Google Scholar 

  135. Kujala UM et al. (1992) ABO blood groups and musculoskeletal injuries. Injury. 23(2): p. 131–3

    Article  CAS  PubMed  Google Scholar 

  136. Silver FH, Freeman JW, Seehra GP (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech. 36(10): p. 1529–53

    Article  PubMed  Google Scholar 

  137. Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron. 32(3): p. 223–37

    Article  CAS  PubMed  Google Scholar 

  138. Mokone GG et al. (2006) The COL5A1 gene and Achilles tendon pathology. Scand J Med Sci Sports. 16(1): p. 19–26

    Article  CAS  PubMed  Google Scholar 

  139. September AV et al. (2009) Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br J Sports Med. 43(5): p. 357–65

    Article  CAS  PubMed  Google Scholar 

  140. Posthumus M et al. (2009) Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br J Sports Med. 43(5): p. 352–6

    Article  CAS  PubMed  Google Scholar 

  141. Raleigh SM et al. (2009) Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. Br J Sports Med. 43(7): p. 514–20

    Article  CAS  PubMed  Google Scholar 

  142. Collins M, Posthumus M (2011) Type V collagen genotype and exercise-related phenotype relationships: a novel hypothesis. Exerc Sport Sci Rev. 39(4): p. 191–8

    PubMed  Google Scholar 

  143. Laguette MJ et al. (2011) Sequence variants within the 3'-UTR of the COL5A1 gene alters mRNA stability: implications for musculoskeletal soft tissue injuries. Matrix Biol. 30(5–6): p. 338–45

    Article  CAS  PubMed  Google Scholar 

  144. Abrahams Y et al. (2013) Polymorphisms within the COL5A1 3'-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Ann Hum Genet. 77(3): p. 204–14

    Article  CAS  PubMed  Google Scholar 

  145. Collins M (2013) Molecular genetics an important tool in elucidating the molecular mechanisms underlying tendinopathies. British Journal of Sports Medicine. 47(9)

    Google Scholar 

  146. Jarvinen TA et al. (2003) Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci. 116(Pt 5): p. 857–66

    Article  CAS  PubMed  Google Scholar 

  147. Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn. 218(2): p. 235–59

    Article  CAS  PubMed  Google Scholar 

  148. Jarvinen TA et al. (1999) Mechanical loading regulates tenascin-C expression in the osteotendinous junction. J Cell Sci. 112 Pt 18: p. 3157–66

    CAS  PubMed  Google Scholar 

  149. Riley GP et al. (1996) Tenascin-C and human tendon degeneration. Am J Pathol. 149(3): p. 933–43

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chiquet M et al. (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22 (1): p. 73–80

    Article  CAS  PubMed  Google Scholar 

  151. Mokone GG et al. (2005) The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with achilles tendon injuries. Am J Sports Med. 33(7): p. 1016–21

    Article  PubMed  Google Scholar 

  152. September AV, Schwellnus MP, Collins M (2007) Tendon and ligament injuries: the genetic component. Br J Sports Med. 41(4): p. 241–6; discussion 246

    Article  PubMed  PubMed Central  Google Scholar 

  153. Palmer LJ, Cardon LR (2005) Shaking the tree: mapping complex disease genes with linkage disequilibrium. Lancet. 366(9492): p. 1223–34

    Article  CAS  PubMed  Google Scholar 

  154. Magra M, Maffulli N (2005) Matrix metalloproteases: a role in overuse tendinopathies. Br J Sports Med. 39(11): p. 789–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Birkedal-Hansen H et al. (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 4(2): p. 197–250

    Article  CAS  PubMed  Google Scholar 

  156. Somerville RP, Oblander SAS, Apte SS (2003) Matrix metalloproteinases: old dogs with new tricks. Genome Biol. 4(6): p. 216

    Article  PubMed  PubMed Central  Google Scholar 

  157. Alfredson H et al. (2003) cDNA-arrays and real-time quantitative PCR techniques in the investigation of chronic Achilles tendinosis. J Orthop Res. 21(6): p. 970–5

    Article  CAS  PubMed  Google Scholar 

  158. Higuchi H et al. (2006) Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop. 30(1): p. 43–7

    Article  CAS  PubMed  Google Scholar 

  159. Thornton GM et al. (2010) Changes in mechanical loading lead to tendonspecific alterations in MMP and TIMP expression: influence of stress deprivation and intermittent cyclic hydrostatic compression on rat supraspinatus and Achilles tendons. Br J Sports Med. 44(10): p. 698–703

    Article  CAS  PubMed  Google Scholar 

  160. Chard MD et al. (1994) Rotator cuff degeneration and lateral epicondylitis: a comparative histological study. Ann Rheum Dis. 53(1): p. 30–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Corps AN et al. (2002) Ciprofloxacin enhances the stimulation of matrix metalloproteinase 3 expression by interleukin-1beta in human tendon-derived cells. A potential mechanism of fluoroquinolone-induced tendinopathy. Arthritis Rheum. 46(11): p. 3034–40

    Article  CAS  PubMed  Google Scholar 

  162. Posthumus M et al. (2010) Components of the transforming growth factor-beta family and the pathogenesis of human Achilles tendon pathology – a genetic association study. Rheumatology (Oxford). 49(11): p. 2090–7

    Article  CAS  Google Scholar 

  163. Posthumus M et al. (2012) Matrix metalloproteinase genes on chromosome 11q22 and the risk of anterior cruciate ligament (ACL) rupture. Scand J Med Sci Sports. 22(4): p. 523–33

    Article  CAS  PubMed  Google Scholar 

  164. Nell EM et al. (2012) The apoptosis pathway and the genetic predisposition to Achilles tendinopathy. J Orthop Res. 30(11): p. 1719–24

    Article  CAS  PubMed  Google Scholar 

  165. Chiquet M (1999) Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18(5): p. 417–26

    Article  CAS  PubMed  Google Scholar 

  166. Young BB et al. (2002) The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea. J Cell Biochem. 87(2): p. 208–20

    Article  CAS  PubMed  Google Scholar 

  167. Keene DR et al. (1991) Two type XII-like collagens localize to the surface of banded collagen fibrils. J Cell Biol. 113(4): p. 971–8

    Article  CAS  PubMed  Google Scholar 

  168. Schuppan D et al. (1990) Undulin, an extracellular matrix glycoprotein associated with collagen fibrils. J Biol Chem. 265(15): p. 8823–32

    CAS  PubMed  Google Scholar 

  169. September AV et al. (2008) The COL12A1 and COL14A1 genes and Achilles tendon injuries. Int J Sports Med. 29(3): p. 257–63

    Article  CAS  PubMed  Google Scholar 

  170. Eskola PJ et al. (2012) Genetic association studies in lumbar disc degeneration: a systematic review. PLoS ONE. 7(11): p. e49995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Magra M, Maffulli N (2007) Genetics: does it play a role in tendinopathy? Clin J Sport Med. 17 (4): p. 231–3

    Article  PubMed  Google Scholar 

  172. Hay M et al. (2013) Association of type XI collagen genes with chronic Achilles tendinopathy in independent populations from South Africa and Australia. Br J Sports Med. 47(9): p. 569–74

    Article  PubMed  Google Scholar 

  173. El Khoury L et al. (2013) Polymorphic variation within the ADAMTS2, ADAMTS14, ADAMTS5, ADAM12 and TIMP2 genes and the risk of Achilles tendon pathology: A genetic association study. J Sci Med Sport. 16(6): p. 493–8

    Article  PubMed  Google Scholar 

  174. Raleigh DP, Plaxco KW (2005) The protein folding transition state: what are Phi-values really telling us? Protein Pept Lett. 12 (2): p. 117–22

    Article  CAS  PubMed  Google Scholar 

  175. Schwellnus MP (2013) Genetic biomarkers and exercise-related injuries: current clinical applications? Br J Sports Med. 47(9): p. 530–2

    Article  CAS  PubMed  Google Scholar 

  176. September AV, Posthumus M, Collins M (2012) Application of genomics in the prevention, treatment and management of Achilles tendinopathy and anterior cruciate ligament ruptures. Recent Pat DNA Gene Seq. 6(3): p. 216–23

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kjaer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Kjaer, M., Bachl, N., Lorenz, C., Nehrer, S., Halbwirth, F. (2018). Mechanische Belastung und Bindegewebe. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics