Skip to main content

Nervensystem

  • Chapter
  • First Online:
Molekulare Sport- und Leistungsphysiologie

Zusammenfassung

Dieses Kapitel zeigt neben einer basisphysiologischen Einführung in die molekularen Mechanismen des Nervensystems vor allem dessen Plastizität und Adaptationsfähigkeit durch körperliche Belastungen. Zunächst wird auf die kurzfristigen Änderungen des Nervensystems durch Ermüdung eingegangen. In weiterer Folge werden längerfristige Adaptionen durch spezielle Trainingsformen erörtert. Der Einfluss zentraler Mechanismen auf die Trainierbarkeit der Skelettmuskulatur lässt sich am Beispiel des ideomotorischen Trainings untermauern. Es wurde gezeigt, dass durch Bewegungsvorstellungen Veränderungen in jenen Zonen im Kortex erzielt werden können, welche an der Bewegungssteuerung und somit auch am koordinativen Ablauf beteiligt sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Gabriel DA, Kamen G, Frost G (2006) Neural adaptations to resistive exercise: mechanisms and recommendations for training practices. Sports Med. 36(2): p. 133–49

    Article  PubMed  Google Scholar 

  2. Feinstein B et al. (1955) Morphologic studies of motor units in normal human muscles. Acta Anat (Basel) 23(2): p. 127–42

    Article  CAS  Google Scholar 

  3. Burke RE, Levine DN, Zajac FE (1971) 3rd, Mammalian motor units: physiological-histochemical correlation in three types in cat gastrocnemius. Science. 174(4010): p. 709–12

    Article  CAS  PubMed  Google Scholar 

  4. Bodine SC et al. (1987) Maximal force as a function of anatomical features of motor units in the cat tibialis anterior. J Neurophysiol. 57(6): p. 1730–45

    CAS  PubMed  Google Scholar 

  5. Henneman E, Somjen G, Carpenter DO (1965) Functional Significance of Cell Size in Spinal Motoneurons. J Neurophysiol. 28: p. 560–80

    CAS  PubMed  Google Scholar 

  6. Mosso A (1904) Fatigue. London: Swan Sonnenschein

    Google Scholar 

  7. Gandevia SC (1998) Neural control in human muscle fatigue: changes in muscle afferents, motoneurones and motor cortical drive [corrected]. Acta Physiol Scand. 162(3): p. 275–83

    Article  CAS  PubMed  Google Scholar 

  8. Gardiner P (2011) Advanced Neuromuscular Exercise Physiology. Human Kinetics

    Google Scholar 

  9. Nordstrom MA et al. (2007) Does motoneuron adaptation contribute to muscle fatigue? Muscle Nerve. 35 (2): p. 135–58

    Article  CAS  PubMed  Google Scholar 

  10. Garland SJ, McComas AJ (1990) Reflex inhibition of human soleus muscle during fatigue. J Physiol. 429: p. 17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duchateau J, Hainaut K (1993) Behaviour of short and long latency reflexes in fatigued human muscles. J Physiol. 471: p. 787–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klinke R, Silbernagl S (2005) Lehrbuch der Physiologie. Vol. 5. Auflage. Stuttgart: Thieme

    Google Scholar 

  13. Rohen JW (2001) Funktionelle Neuroanatomie: Lehrbuch und Atlas. Stuttgart: Verlag für Medizin und Naturwissenschaften

    Google Scholar 

  14. Bongiovanni LG, Hagbarth KE, Stjernberg L (1990) Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J Physiol. 423: p. 15–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hagbarth KE et al. (1986) Gamma loop contributing to maximal voluntary contractions in man. J Physiol. 380: p. 575–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Avela J, Komi PV (1998) Reduced stretch reflex sensitivity and muscle stiffness after long-lasting stretch-shortening cycle exercise in humans. Eur J Appl Physiol Occup Physiol. 78(5): p. 403–10

    Article  CAS  PubMed  Google Scholar 

  17. Hultborn H et al. (1987) Assessing changes in presynaptic inhibition of I a fibres: a study in man and the cat. J Physiol. 389: p. 729–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nielsen J, Kagamihara Y (1993) The regulation of presynaptic inhibition during co-contraction of antagonistic muscles in man. J Physiol. 464: p. 575–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gandevia SC et al. (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol. 490 (Pt 2): p. 529–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taylor JL et al. (1996) Changes in motor cortical excitability during human muscle fatigue. J Physiol. 490 (Pt 2): p. 519–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gollhofer A, Taube W, Leukel C (2006) Zentrale Ermüdung als leistungslimitierender Faktor bei schnellkräftigen Kontraktionen: Evaluation der Ermüdungswiderstandsfähigkeit vor und nach Training mit Hilfe von elektrischer Nervenstimulation und transkranieller Magnetstimulation. BISp-Jahrbuch, 2006/07: p. 203–208

    Google Scholar 

  22. Desaulniers P, Lavoie PA, Gardiner PF (1998) Endurance training increases acetylcholine receptor quantity at neuromuscular junctions of adult rat skeletal muscle. Neuroreport. 9(16): p. 3549–52

    Article  CAS  PubMed  Google Scholar 

  23. Deschenes MR et al. (1993) The effects of exercise training of different intensities on neuromuscular junction morphology. J Neurocytol. 22(8): p. 603–15

    Article  CAS  PubMed  Google Scholar 

  24. Jasmin BJ, Lavoie PA, Gardiner PF (1988), Fast axonal transport of labeled proteins in motoneurons of exercise-trained rats. Am J Physiol. 255 6Pt(1): p. C731–6

    CAS  PubMed  Google Scholar 

  25. Gazula VR et al. (2004) Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol. 476(2): p. 130–45

    Article  PubMed  Google Scholar 

  26. Gerchman LB, Edgerton VR, Carrow RE (1975) Effects of physical training on the histochemistry and morphology of ventral motor neurons. Exp Neurol. 49(3): p. 790–801

    Article  CAS  PubMed  Google Scholar 

  27. von Bartheld CS (2004) Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. J Neurobiol. 58(2): p. 295–314

    Article  Google Scholar 

  28. Kang CM, Lavoie PA, Gardiner PF (1995) Chronic exercise increases SNAP-25 abundance in fast-transported proteins of rat motoneurones. Neuroreport. 6(3): p. 549–53

    Article  CAS  PubMed  Google Scholar 

  29. Gharakhanlou R, Chadan S, Gardiner PF (1999) Increased activity in the form of endurance training increases calcitonin gene-related peptide content in lumbar motoneuron cell bodies and in sciatic nerve in the rat. Neuroscience. 89(4): p. 1229–39

    Article  CAS  PubMed  Google Scholar 

  30. Shima N et al. (2002) Cross education of muscular strength during unilateral resistance training and detraining. Eur J Appl Physiol. 86(4): p. 287–94

    Article  PubMed  Google Scholar 

  31. Munn J, Herbert RD, Gandevia SC (2004) Contralateral effects of unilateral resistance training: a meta-analysis. J Appl Physiol (1985). 96(5): p. 1861–6

    Article  Google Scholar 

  32. Hortobagyi T et al. (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol. 90(4): p. 2451–9

    Article  PubMed  Google Scholar 

  33. Muellbacher W et al. (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol. 111(2): p. 344–9

    Article  CAS  PubMed  Google Scholar 

  34. Carroll TJ, Riek S, Carson RG (2001) Neural adaptations to resistance training: implications for movement control. Sports Med. 31(12): p. 829–40

    Article  CAS  PubMed  Google Scholar 

  35. Milner-Brown HS, Stein RB, Lee RG (1975) Synchronization of human motor units: possible roles of exercise and supraspinal reflexes. Electroencephalogr Clin Neurophysiol. 38(3): p. 245–54

    Article  CAS  PubMed  Google Scholar 

  36. Adkins DL et al. (2006) Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985). 101(6): p. 1776–82

    Article  PubMed  Google Scholar 

  37. Tyc F, Boyadjian A, Devanne H (2005) Motor cortex plasticity induced by extensive training revealed by transcranial magnetic stimulation in human. Eur J Neurosci. 21(1): p. 259–66

    Article  CAS  PubMed  Google Scholar 

  38. Swain RA et al. (2003) Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 117(4): p. 1037–46

    Article  CAS  PubMed  Google Scholar 

  39. Hakkinen K et al. (2003) Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 89(1): p. 42–52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Maria Strasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Strasser, EM., Oesen, S. (2018). Nervensystem. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_6

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics