Skip to main content

Einführung in das Herz-Kreislauf-System

  • Chapter
  • First Online:

Zusammenfassung

Herz-Kreislauf und Atmung sind Systeme, die jede Zelle des menschlichen Körpers, so auch die arbeitende Skelettmuskulatur, mit Sauerstoff und energiereichen Substraten für den aeroben Stoffwechsel versorgen und Stoffwechselendprodukte zur Metabolisierung transportieren. Sie unterliegen einer Gesetzmäßigkeit zur Funktions- (Prävention) und Morphologie-Maximierung, auch bei langdauernder körperlicher Inaktivität, nach Erkrankungen und Verletzungen. In den physiologischen und pathologischen Regelkreisen der Organsysteme sind Hormone, Substrate, Enzyme, Zytokine, und Botenstoffe auf molekularer Ebene (z. B. miRNA), eingeschaltet, um funktionelle Abläufe zu steuern. In diesem Kapitel wird von einfachen physiologischen Abläufen des Herz-Kreislaufsystems auf morphologische Veränderungen eingegangen, welche bei regelmäßiger körperliche Aktivität und Training erfolgen. Diese Regulations- und Adaptationsmechanismen werden hinsichtlich der prädisponierenden genetischen Voraussetzung wie auch der molekularen Abläufe dargestellt. Aufgrund der zentralen Bedeutung des Herzens wird auf physiologische und pathologische Veränderungen funktioneller wie morphologischer Art eingegangen. Es werden die wesentlichen diagnostischen Kriterien von EKG und der Ergometrie besprochen. Dazu gehören auch jene Gene, welche für Herz-Kreislauf-Erkrankungen verantwortlich sind und in Kap. 16 ausführlich dargestellt werden.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Fletcher GF et al. (2013) Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 128(8): p. 873–934

    Article  PubMed  Google Scholar 

  2. Löllgen H, Erdmann E, Gitt A (2009) Ergometrie: Belastungsuntersuchungen in Klinik und Praxis. Vol. 3.. Springer

    Google Scholar 

  3. Salminen A, Vihko V (1983) Endurance training reduces the susceptibility of mouse skeletal muscle to lipid peroxidation in vitro. Acta Physiol Scand. 117(1): p. 109–13

    Article  CAS  PubMed  Google Scholar 

  4. Tittel K (1999) Beschreibende und funktionelle Anatomie des Menschen Vol. 12. München: Urban & Fischer

    Google Scholar 

  5. Appell H-J, Stang-Voss C, Battermann N (2008) Funktionelle Anatomie, Grundlagen sportlicher Leistung und Bewegung. 4., vollst. überarb. Aufl. Heidelberg: Springer Medizin-Verl. XII, 179 S

    Google Scholar 

  6. Lentner C (1990) Geigy scientific tables: Heart and circulation. Geigy scientific tables, ed. C. Lentner. Vol. 5. Minnesota: Ciba-Geigy

    Google Scholar 

  7. Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM. 101(7): p. 513–8

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt-Trucksäss A, Huonker M, Halle M, Dickhuth HH, Sandrock M (2008) Einfluss der körperlichen Aktivität auf die Arterienwand. Deutsche Zeitschrift für Sportmedizin. 59(9): p. 200–205

    Google Scholar 

  9. Markl J et al. (2012) Purves, Biologie. Heidelberg: Springer Spektrum

    Google Scholar 

  10. Drexler H, Haller H, Landmesser U (2003) Endothelfunktion und kardiovaskuläre Erkrankungen. Vol. 2. UNI-MED-Verlag

    Google Scholar 

  11. Roskamm H (2004) Arbeitsweise des gesunden Herzens. Herzkrankheiten: Pathophysiologie, Diagnostik, Therapie ed. Roskamm H, Neumann FJ, Kalusche D, Bestehorn HP. Springer

    Google Scholar 

  12. Schmidt RF (2007) Physiologie des Menschen, mit Pathophysiologie; mit 77 Tabellen; [+ IMPP-Fragen Physiologie online]. 30., neu bearb. und aktualisierte Aufl. Heidelberg: Springer. XXII, 1030 S

    Book  Google Scholar 

  13. Baggish AL, Wood MJ (2011) Athlete's heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 123(23): p. 2723–35

    Article  PubMed  Google Scholar 

  14. Glagov S et al. (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med. 112(10): p. 1018–31

    CAS  PubMed  Google Scholar 

  15. Schmidt-Trucksäss A (2007) Gefäßerkrankungen und Sport, in: Sportmedizin für Ärzte, Lehrbuch auf der Grundlage des Weiterbildungssystems der Deutschen Gesellschaft für Sportmedizin und Prävention (DGSP) Dickhuth F, Röcker K, Berg A (Hrsg.). Deutscher Ärzte-Verlag: Köln. p. 111–113

    Google Scholar 

  16. Schmidt RF (2007) Physiologie des Menschen mit Pathophysiologie. 30., überarb. u. aktualisierte Aufl. Springer Berlin Heidelberg, S. 595

    Book  Google Scholar 

  17. Löllgen H (2005) Kardiopulmonale Funktionsdiagnostik. Vol. 4. Novartis

    Google Scholar 

  18. Löllgen H, Löllgen R (2012) Ergometry, in Encyclopedia of Exercise Medicine in Health and Disease, F.C. Mooren, Editor. Springer: Heidelbert

    Google Scholar 

  19. Holloszy JO (1975) Adaptation of skeletal muscle to endurance exercise. Med Sci Sports. 7(3): p. 155–64

    CAS  PubMed  Google Scholar 

  20. König K (1980) in: Normal Values in Adults Ergometry According to Age, Sex and Training, D.H. M.R. Rulli V., Editor. 1980, Soc. Europea di Cardiologia: Rom. p. 81

    Google Scholar 

  21. Dickhuth H-H, Mayer F, Röcker K, Berg A (2007) Sportmedizin für Ärzte: Lehrbuch auf der Grundlage des Weiterbildungssystems der Deutschen Gesellschaft für Sportmedizin und Prävention (DGSP). Deutscher Ärzteverlag

    Google Scholar 

  22. Utomi V et al. (2013) Systematic review and meta-analysis of training mode, imaging modality and body size influences on the morphology and function of the male athlete's heart. Heart. 99(23): p. 1727–33

    Article  PubMed  Google Scholar 

  23. Fuster V, Alexander RW, O'Rourke RA, Roberts R, King SB, Wellens H (2001) Hurst's the Heart. 10 ed. McGraw-Hill Professional

    Google Scholar 

  24. Haggart CR et al. (2014) Effects of stretch and shortening on gene expression in intact myocardium. Physiol Genomics. 46(2): p. 57–65

    Article  PubMed  Google Scholar 

  25. Watson PA (1996) Mechanical activation of signaling pathways in the cardiovascular system. Trends Cardiovasc Med. 6(3): p. 73–9

    Article  CAS  PubMed  Google Scholar 

  26. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J. 12(4): p. 1681–92

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Newton-Cheh C et al. (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 41(6): p. 666–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ackerman MJ et al. (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm. 8(8): p. 1308–39

    Article  PubMed  Google Scholar 

  29. Cerrone M, Priori SG (2011) Genetics of sudden death: focus on inherited channelopathies. Eur Heart J. 32(17): p. 2109–18

    Article  PubMed  Google Scholar 

  30. Crotti L (2011) Genetic predisposition to sudden cardiac death. Curr Opin Cardiol. 26(1): p. 46–50

    Article  PubMed  Google Scholar 

  31. Engberding R. et al. (2010) Isolated non-compaction cardiomyopathy. Dtsch Arztebl Int. 107(12): p. 206–13

    PubMed  PubMed Central  Google Scholar 

  32. Ferrari P, Bianchi G (2000) The genomics of cardiovascular disorders: therapeutic implications. Drugs. 59(5): p. 1025–42

    Article  CAS  PubMed  Google Scholar 

  33. Ganesh SK et al. (2013) Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation. 128(25): p. 2813–51

    Article  PubMed  Google Scholar 

  34. Gerull B. et al. (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet. 36(11): p. 1162–4

    Article  CAS  PubMed  Google Scholar 

  35. Hershberger RE et al. (2009) Genetic evaluation of cardiomyopathy – a Heart Failure Society of America practice guideline. J Card Fail. 15(2): p. 83–97

    Article  PubMed  Google Scholar 

  36. Hershberger RE et al. (2010) Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet. 3(2): p. 155–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoedemaekers, Y.M. et al. () Cardiac beta-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J, 2007. 28(22): p. 2732–7

    Article  CAS  PubMed  Google Scholar 

  38. Maron BJ, Maron MS, Semsarian C (2012) Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 60(8): p. 705–15

    Article  PubMed  Google Scholar 

  39. Morimoto S (2008) Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res. 77(4): p. 659–66

    Article  CAS  PubMed  Google Scholar 

  40. Noseworthy PA, Newton-Cheh C (2008) Genetic determinants of sudden cardiac death. Circulation. 118(18): p. 1854–63

    Article  PubMed  Google Scholar 

  41. Priori SG, Zipes DP (2006) Sudden cardiac death. A handbook for clinical practice. Blackwell Publishing

    Google Scholar 

  42. Probst S et al. (2011) Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ Cardiovasc Genet. 4(4): p. 367–74

    Article  CAS  PubMed  Google Scholar 

  43. Richard P et al. (2003) Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 107(17): p. 2227–32

    Article  PubMed  Google Scholar 

  44. Roden D (2009) Cardiovasciular genetics and genomics. Blackwell Publishing

    Google Scholar 

  45. Sen-Chowdhry S et al. (2010) Mutational heterogeneity, modifier genes, and environmental influences contribute to phenotypic diversity of arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet. 3(4): p. 323–30

    Article  PubMed  Google Scholar 

  46. Sidhu, J. and R. Roberts, Genetic basis and pathogenesis of familial WPW syndrome. Indian Pacing Electrophysiol J, 2003. 3(4): p. 197–201

    PubMed  PubMed Central  Google Scholar 

  47. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 83(6): p. 1849–65

    Article  CAS  PubMed  Google Scholar 

  48. Friehs I et al. (2013) Pressure-overload hypertrophy of the developing heart reveals activation of divergent gene and protein pathways in the left and right ventricular myocardium. Am J Physiol Heart Circ Physiol. 304(5): p. H697–708

    Article  CAS  PubMed  Google Scholar 

  49. Asakura M, Kitakaze M (2009) Global gene expression profiling in the failing myocardium. Circ J. 73(9): p. 1568–76

    Article  CAS  PubMed  Google Scholar 

  50. Levy D. et al. (2009) Genome-wide association study of blood pressure and hypertension. Nat Genet. 41(6): p. 677–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cooper GT (1987) Cardiocyte adaptation to chronically altered load. Annu Rev Physiol,. 49: p. 501–18

    Article  CAS  PubMed  Google Scholar 

  52. Yamazaki T, Komuro I, Yazaki Y (1999) Role of the renin-angiotensin system in cardiac hypertrophy. Am J Cardiol. 83(12A): p. 53H–57H

    Article  CAS  PubMed  Google Scholar 

  53. Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 64: p. 403–34

    Article  CAS  PubMed  Google Scholar 

  54. Sugden PH, Bogoyevitch MA (1995) Intracellular signalling through protein kinases in the heart. Cardiovasc Res. 30(4): p. 478–92

    Article  CAS  PubMed  Google Scholar 

  55. McPherson R. et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science. 316(5830): p. 1488–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. International Consortium for Blood Pressure Genome-Wide Association, S. et al. (2001) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 478(7367): p. 103–9

    Google Scholar 

  57. Consortium CAD et al. (2013) Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 45(1): p. 25–33

    Google Scholar 

  58. Schunkert H et al. (2011) Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 43(4): p. 333–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams RR et al. (1990) Genetics of hypertension: what we know and don't know. Clin Exp Hypertens A. 12(5): p. 865–76

    CAS  PubMed  Google Scholar 

  60. Thews G, Vaupel P (2005) Vegetative Physiologie, mit 64 Tabellen. 5., aktualisierte Aufl. ed. Berlin [u. a.]: Springer. XV, 619 S

    Google Scholar 

  61. Rubert M, Zipes DP (2012) Genesis of Cardiac Arrhythmias: Electrophysiologic Considerations, in Braunwald's Heart Disease – A Textbook of Cardiovascular Medicine, M. R.O. Bonow, D.L, Zipes, D.P., Libby, P., Editor. Elsevier Saunders: Philadelphia. p. 653–684

    Google Scholar 

  62. Piper H (2007) Herzerregung,in Physiologie Des Menschen: Mit Pathophysiologie, L. R.F. Schmidt, F., Editor. Springer: London

    Google Scholar 

  63. Olshansky B, Sullivan RM (2013) Inappropriate sinus tachycardia. J Am Coll Cardiol. 61(8): p. 793–801

    Article  PubMed  Google Scholar 

  64. Opie LH, Hasenfuss G (2012) Mechanisms of Cardiac Contraction and Relaxation, in Braunwald's Heart Disease – A Textbook of Cardiovascular Medicine, M. R.O. Bonow, D.L., Zipes, D.P., Libby, P., Editor. Elsevier Saunders: Philadelphia. p. 459–486

    Google Scholar 

  65. Berbalk A, Boldt F, Hansel J, Horstmann T, Huonker M, Löllgen H, Mooren F-C, Nührenbörger C, Schmitt H, Urhausen A (2007) Leitlinie. Vorsorgeuntersuchung im Sport. Available from: http://www.dgsp.de/_downloads/allgemein/leitlinie_vorsorgeuntersuchung_4.10.2007-1-19.pdf

  66. Löllgen H, Graham T, Sjogaard G (1980) Muscle metabolites, force, and perceived exertion bicycling at varying pedal rates. Med Sci Sports Exerc. 12(5): p. 345–51

    Article  PubMed  Google Scholar 

  67. Froelicher VF, Myers J (2006) Exercise and the Heart. 5 ed. 2006: Saunders

    Google Scholar 

  68. Kokkinos P et al. (2010) Exercise capacity and mortality in older men: a 20-year follow-up study. Circulation. 122(8): p. 790–7

    Article  PubMed  Google Scholar 

  69. Vanhees L et al. (1994) Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 23(2): p. 358–63

    Article  CAS  PubMed  Google Scholar 

  70. Löllgen H (2003) Primärprävention kardialer Erkrankungen: Stellenwert der körperlichen Aktivität. Deutsches Ärzteblatt. 100(15): p. A–987/B–828/C–773

    Google Scholar 

  71. Gielen S, Schuler G, Adams V (2010) Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 122(12): p. 1221–38

    Article  PubMed  Google Scholar 

  72. Drexler H et al. (1992) Alterations of skeletal muscle in chronic heart failure. Circulation. 85(5): p. 1751–9

    Article  CAS  PubMed  Google Scholar 

  73. Weisman IM, Zeballos RJ (2001) Clinical exercise testing. Clin Chest Med. 22(4): p. 679–701, viii

    Article  CAS  PubMed  Google Scholar 

  74. Garber CE et al. (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc,. 43(7): p. 1334–59

    PubMed  Google Scholar 

  75. Rowell LB (1986) Human circulation regulation during physical stress. London: Oxford University Press

    Google Scholar 

  76. Scharhag J, Löllgen H, Kindermann W (2013) Herz und Leistungssport: Nutzen oder Schaden? Deutsches Ärzteblatt. 110: p. 1–2

    Google Scholar 

  77. Niess AM.e.a. (2002) Freie Radikale und oxidativer Stress bei körperlicher Belastung und Trainingsanpassung – Eine aktuelle Übersicht. Deutsche Zeitschrift für Sportmedizin. 53(12): p. 345–353

    CAS  Google Scholar 

  78. Vina J et al. (2012) Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 167(1): p. 1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bachl, N., Kinzlbauer, M., Tschan, H., Metabolische Größen – Grundlagen, in Ergometrie. Belastungsuntersuchungen in Klinik und Praxis, E. H. Löllgen, E., Gitt, A., Editor. 2009, Springer

    Google Scholar 

  80. Völker K (2012) Bewegung im Alltag zur Prävention und Therapie. 53. 6(671–677)

    Google Scholar 

  81. Hambrecht R et al. (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 107(25): p. 3152–8

    Article  CAS  PubMed  Google Scholar 

  82. Wienbergen H, Hambrecht R (2012) Physical exercise training for cardiovascular diseases. Herz. 37(5): p. 486–92

    Article  CAS  PubMed  Google Scholar 

  83. Saltin B, Gollnick PD (1983) Skeletal Muscle Adaptability: Significance for Metabolism and Performance

    Google Scholar 

  84. Steinacker JM, Wang L, Lormes W, Reißnecker S, Liu Y (2002) Strukturanpassungen des Skelettmuskels auf Training. Deutsche Zeitschrift für Sportmedizin. 53(12): p. 354–360

    CAS  Google Scholar 

  85. Wolfarth B (2002) Genetische Polymorphismen bei hochtrainierten Ausdauerathleten – die Genathlete-Studie. Deutsche Zeitschrift für Sportmedizin. 53(2): p. 338–344

    CAS  Google Scholar 

  86. Bloch W, Suhr F, Zimmer P (2012) Molekulare Mechanismen der Herz- und Gefäßanpassung durch Sport. Einfluss von Epigenetik, Mechanotransduktion und freien Radikalen. Herz. 37(5): p. 508–517

    Article  CAS  PubMed  Google Scholar 

  87. Cheng TO (2009) Hypertrophic cardiomyopathy vs athlete's heart. Int J Cardiol. 131(2): p. 151–5

    Article  PubMed  Google Scholar 

  88. La Gerche A et al. (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 33(8): p. 998–1006

    Article  CAS  PubMed  Google Scholar 

  89. Sheikh N, Sharma S (2014) Impact of ethnicity on cardiac adaptation to exercise. Nat Rev Cardiol. 11(4): p. 198–217

    Article  PubMed  Google Scholar 

  90. Sharma S (2003) Athlete's heart – effect of age, sex, ethnicity and sporting discipline. Exp Physiol. 88(5): p. 665–9

    Article  PubMed  Google Scholar 

  91. Chandra N et al. (2013) Sudden cardiac death in young athletes: practical challenges and diagnostic dilemmas. J Am Coll Cardiol. 61(10): p. 1027–40

    Article  PubMed  Google Scholar 

  92. Rimensberger C et al. (2014) Right ventricular adaptations and arrhythmias in amateur ultra-endurance athletes. Br J Sports Med. 48(15): p. 1179–84

    Article  PubMed  Google Scholar 

  93. Zaidi A et al. (2013) Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation. 127(17): p. 1783–92

    Article  PubMed  Google Scholar 

  94. Utomi, V. et al. (2014) Predominance of normal left ventricular geometry in the male "athlete's heart". Heart. 100(16): p. 1264–71

    Article  PubMed  Google Scholar 

  95. Williams PT, Franklin BA (2013) Reduced incidence of cardiac arrhythmias in walkers and runners. PLoS One. 8(6): p. e65302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huonker M et al. (2003) Size and blood flow of central and peripheral arteries in highly trained able-bodied and disabled athletes. J Appl Physiol (1985). 95(2): p. 685–91

    Article  CAS  PubMed  Google Scholar 

  97. Miyachi, M. et al. () Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation, 2004. 110(18): p. 2858–63

    Article  PubMed  Google Scholar 

  98. Steinacker J (2009) Energieliefernde Systeme und Laktat in der Ergometrie, in Ergometrie. Belastungsuntersuchungen in Klink und Praxis, E. H. Löllgen, E., Gitt, A., Editor. Springer: Berlin Heidelberg. p. 213–227

    Google Scholar 

  99. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 8(8): p. 457–65

    Article  CAS  PubMed  Google Scholar 

  100. Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000 Sep;440(5):653–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Löllgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Löllgen, H. et al. (2018). Einführung in das Herz-Kreislauf-System. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_4

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics