Skip to main content

Stoffwechselprinzipien der Ernährung

  • Chapter
  • First Online:
Molekulare Sport- und Leistungsphysiologie

Zusammenfassung

Die Ernährung des Sportlers stellt neben dem Training eine wichtige Grundlage für die sportliche Leistungsfähigkeit dar. Dabei geht es nicht nur um eine ausreichende Versorgung des Sportlers hinsichtlich des Energie- bzw. Makro- und Mikronährstoffbedarfs, um das Funktionieren der normalen physiologischen Vorgänge zu gewährleisten, sondern vielmehr darum, Stoffwechselwege auf zellulärer Ebene und somit die Anpassungsmechanismen an verschiedene Trainingsreize zu optimieren. Bei ihrem Abbau liefern die Makronährstoffe dem Organismus zum einen Verbrennungsenergie und zum anderen Bausteine, welche dann entweder zur Energiegewinnung weiter zerlegt (kataboler Stoffwechsel) oder zum Aufbau neuer Moleküle (anaboler Stoffwechsel) verwendet werden können. Bezüglich der Sporternährung können Nahrungsergänzungsmittel unter bestimmten Umständen dazu beitragen, die Deckung des Nährstoffbedarfs zu erleichtern bzw. optimieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Biesalksi HK, Bischoff SC, Puchstein C (2010) Ernährungsmedizin. 4. Auflage edn. Thieme, Stuttgart

    Google Scholar 

  2. Frayn KN (2010) Metabolic Regulation: A Human Perspective. Wiley-Blackwell, Chichester

    Google Scholar 

  3. Nieman DC, Pedersen BK (2000) Nutrition and Exercise Immunology. CRC Press, Boca Raton

    Google Scholar 

  4. Raschka C, Ruf S (2012) Sport und Ernährung. Wissenschaftlich basierte Empfehlunen und Ernährugnspläne für die Praxis, vol 1. Aufl. Stuttgart

    Google Scholar 

  5. Schlieper CA (2010) Grundfragen der Ernährung. Handwerk und Technik, Hamburg

    Google Scholar 

  6. Widhalm K (ed) (2009) Ernährungsmedizin. Die Nährstoffe bei körperlicher Aktivität. Verl.-Haus der Ärzte Wien

    Google Scholar 

  7. Brody T (1999) Nutritional biochemistry Academic Press, San Diego, Californien

    Google Scholar 

  8. Wagner I, Musso H (1983) New Naturally Occuring Amino Acids. Angewandte Chemie International Edition in English 22 (11):13. doi:10.1002/anie.198308161

    Article  Google Scholar 

  9. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS (2007) American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39 (2):377–390. doi:10.1249/mss.0b013e31802ca597. 00005768-200702000-00022 [pii]

    Article  PubMed  Google Scholar 

  10. Hipp A, Nieß A (2008) Vitamine im Sport – Nutzen oder Risiko? Deutsche Zeitschrift für Sportmdeizin 59 (3): 2

    Google Scholar 

  11. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297 (8):842–857. doi:297/8/842 [pii]. 10.1001/jama.297.8.842

    Article  CAS  PubMed  Google Scholar 

  12. Roth E (2007) Immune and cell modulation by amino acids. Clin Nutr 26 (5):535–544. doi:S0261-5614(07)00094-5 [pii]. 10.1016/j.clnu.2007.05.007

    Article  CAS  PubMed  Google Scholar 

  13. Roth E (2008) Nonnutritive effects of glutamine. J Nutr 138 (10):2025S–2031S. doi:138/10S-I/2025S [pii]

    CAS  PubMed  Google Scholar 

  14. Philp A, Hargreaves M, Baar K (2012) More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 302 (11):E1343–1351. doi:10.1152/ajpendo.00004.2012.ajpendo.00004.2012 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Vettor R, Milan G, Franzin C, Sanna M, De Coppi P, Rizzuto R, Federspil G (2009) The origin of intermuscular adipose tissue and its pathophysiological implications. Am J Physiol Endocrinol Metab 297 (5):E987–998. doi:10.1152/ajpendo.00229.2009. 00229.2009 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37 (9):737–763. doi:3791 [pii]

    Article  PubMed  Google Scholar 

  17. Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK (2005) Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol 98 (1):93–99. doi:10.1152/japplphysiol.00163.2004. 00163.2004 [pii]

    Article  PubMed  Google Scholar 

  18. Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29 (3):218–222

    Article  CAS  PubMed  Google Scholar 

  19. Arkinstall MJ, Bruce CR, Clark SA, Rickards CA, Burke LM, Hawley JA (2004) Regulation of fuel metabolism by preexercise muscle glycogen content and exercise intensity. J Appl Physiol 97 (6):2275–2283. doi:10.1152/japplphysiol.00421.2004. 00421.2004 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A et al. (2003) A short-term, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr 77 (2):313–318

    CAS  PubMed  Google Scholar 

  21. Jump DB, Clarke SD (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19:63–90. doi:10.1146/annurev.nutr.19.1.63

    Article  CAS  PubMed  Google Scholar 

  22. Zderic TW, Davidson CJ, Schenk S, Byerley LO, Coyle EF (2004) High-fat diet elevates resting intramuscular triglyceride concentration and whole body lipolysis during exercise. Am J Physiol Endocrinol Metab 286 (2):E217–225. doi:10.1152/ajpendo.00159.2003. 00159.2003 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Coyle EF, Jeukendrup AE, Oseto MC, Hodgkinson BJ, Zderic TW (2001) Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise. Am J Physiol Endocrinol Metab 280 (3):E391–398

    CAS  PubMed  Google Scholar 

  24. Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF (1997) Lipolytic suppression following carbohydrate ingestion limits fat oxidation during exercise. Am J Physiol 273 (4 Pt 1):E768–775

    CAS  PubMed  Google Scholar 

  25. Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF (1999) Substrate metabolism when subjects are fed carbohydrate during exercise. Am J Physiol 276 (5 Pt 1):E828–835

    CAS  PubMed  Google Scholar 

  26. Freyssenet D (2007) Energy sensing and regulation of gene expression in skeletal muscle. J Appl Physiol 102 (2):529–540. doi:01126.2005 [pii]. 10.1152/japplphysiol.01126.2005

    Article  CAS  PubMed  Google Scholar 

  27. Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO (1990) Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 68 (3):990–996

    CAS  PubMed  Google Scholar 

  28. Churchley EG, Coffey VG, Pedersen DJ, Shield A, Carey KA, Cameron-Smith D, Hawley JA (2007) Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. J Appl Physiol 102 (4):1604–1611. doi:01260.2006 [pii]. 10.1152/japplphysiol.01260.2006

    Article  CAS  PubMed  Google Scholar 

  29. Creer A, Gallagher P, Slivka D, Jemiolo B, Fink W, Trappe S (2005) Influence of muscle glycogen availability on ERK1/2 and Akt signaling after resistance exercise in human skeletal muscle. J Appl Physiol 99 (3):950–956. doi:00110.2005 [pii]. 10.1152/japplphysiol.00110.2005

    Article  CAS  PubMed  Google Scholar 

  30. Bergstrom J, Hultman E (1966) The effect of exercise on muscle glycogen and electrolytes in normals. Scand J Clin Lab Invest 18 (1):16–20

    Article  CAS  PubMed  Google Scholar 

  31. Jeukendrup AE (2011) Nutrition for endurance sports: marathon, triathlon, and road cycling. J Sports Sci 29 Suppl 1:S91–99. doi:10.1080/02640414.2011.610348

    Article  Google Scholar 

  32. Burke LM, Hawley JA, Wong SH, Jeukendrup AE (2011) Carbohydrates for training and competition. J Sports Sci 29 Suppl 1:S17–27. doi:10.1080/02640414.2011.585473. 938533953 [pii]

    Article  Google Scholar 

  33. Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R et al. (2010) ISSN exercise & sport nutrition review: research & recommendations. J Int Soc Sports Nutr 7:7. doi:10.1186/1550-2783-7-7. 1550-2783-7-7 [pii]

  34. Akerstrom TC, Krogh-Madsen R, Petersen AM, Pedersen BK (2009) Glucose ingestion during endurance training in men attenuates expression of myokine receptor. Exp Physiol 94 (11):1124–1131. doi:10.1113/expphysiol.2009.048983. expphysiol.2009.048983 [pii]

    Article  CAS  PubMed  Google Scholar 

  35. Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA et al. (2010) Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol 109 (1):126–134. doi:10.1152/japplphysiol.00950.2009.japplphysiol.00950.2009 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. De Bock K, Derave W, Eijnde BO, Hesselink MK, Koninckx E, Rose AJ et al. (2008) Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol 104 (4):1045–1055. doi:10.1152/japplphysiol.01195.2007. 01195.2007 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, Jeukendrup AE (2010) Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc 42 (11):2046–2055. doi:10.1249/MSS.0b013e3181dd5070

    Article  CAS  PubMed  Google Scholar 

  38. Nybo L, Pedersen K, Christensen B, Aagaard P, Brandt N, Kiens B (2009) Impact of carbohydrate supplementation during endurance training on glycogen storage and performance. Acta Physiol (Oxf) 197 (2):117–127. doi:10.1111/j.1748-1716.2009.01996.x. APS1996 [pii]

    Article  CAS  Google Scholar 

  39. Yeo WK, Lessard SJ, Chen ZP, Garnham AP, Burke LM, Rivas DA et al. (2008) Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol 105 (5):1519–1526. doi:10.1152/japplphysiol.90540.2008. 90540.2008 [pii]

    Article  CAS  PubMed  Google Scholar 

  40. Hawley JA, Burke LM (2010) Carbohydrate availability and training adaptation: effects on cell metabolism. Exerc Sport Sci Rev 38 (4):152–160. doi:10.1097/JES.0b013e3181f44dd9. 00003677-201010000-00002 [pii]

    Article  PubMed  Google Scholar 

  41. Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol 110 (3):834–845. doi:10.1152/japplphysiol.00949.2010.japplphysiol.00949.2010 [pii]

    Article  CAS  PubMed  Google Scholar 

  42. McBride A, Ghilagaber S, Nikolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 9 (1):23–34. doi:10.1016/j.cmet.2008.11.008. S1550–4131 (08)00360-4[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McBride A, Hardie DG (2009) AMP-activated protein kinase – a sensor of glycogen as well as AMP and ATP? Acta Physiol (Oxf) 196 (1):99–113. doi:10.1111/j.1748-1716.2009.01975.x. APS1975 [pii]

    Article  CAS  Google Scholar 

  44. Bendayan M, Londono I, Kemp BE, Hardie GD, Ruderman N, Prentki M (2009) Association of AMP-activated protein kinase subunits with glycogen particles as revealed in situ by immunoelectron microscopy. J Histochem Cytochem 57 (10):963–971. doi:10.1369/jhc.2009.954016. jhc.2009.954016 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA et al. (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13 (10):861–866. doi:S0960982203002495 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC et al. (2003) AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 13 (10):867–871. doi:S0960982203002926 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Roepstorff C, Vistisen B, Donsmark M, Nielsen JN, Galbo H, Green KA et al. (2004) Regulation of hormone-sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise. J Physiol 560 (Pt 2): 551–562. doi:10.1113/jphysiol.2004.066480. jphysiol.2004.066480 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wojtaszewski JF, MacDonald C, Nielsen JN, Hellsten Y, Hardie DG, Kemp BE et al. (2003) Regulation of 5'AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284 (4):E813–822. doi:10.1152/ajpendo.00436.2002. 00436.2002 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Yeo WK, McGee SL, Carey AL, Paton CD, Garnham AP, Hargreaves M, Hawley JA (2010) Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol 95 (2):351–358. doi:10.1113/expphysiol.2009.049353. expphysiol.2009.049353 [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Cochran AJ, Little JP, Tarnopolsky MA, Gibala MJ (2010) Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. J Appl Physiol 108 (3):628–636. doi:10.1152/japplphysiol.00659.2009. 00659.2009 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Bergman BC, Butterfield GE, Wolfel EE, Lopaschuk GD, Casazza GA, Horning MA, Brooks GA (1999) Muscle net glucose uptake and glucose kinetics after endurance training in men. Am J Physiol 277 (1 Pt 1):E81–92

    CAS  PubMed  Google Scholar 

  52. Friedlander AL, Casazza GA, Horning MA, Huie MJ, Brooks GA (1997) Training-induced alterations of glucose flux in men. J Appl Physiol 82 (4):1360–1369

    CAS  PubMed  Google Scholar 

  53. Friedlander AL, Casazza GA, Horning MA, Huie MJ, Piacentini MF, Trimmer JK, Brooks GA (1998) Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J Appl Physiol 85 (3):1175–1186

    CAS  PubMed  Google Scholar 

  54. Richter EA, Jensen P, Kiens B, Kristiansen S (1998) Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. Am J Physiol 274 (1 Pt 1):E89–95

    CAS  PubMed  Google Scholar 

  55. Kristiansen S, Gade J, Wojtaszewski JF, Kiens B, Richter EA (2000) Glucose uptake is increased in trained vs. untrained muscle during heavy exercise. J Appl Physiol 89 (3):1151–1158

    CAS  PubMed  Google Scholar 

  56. Stepto NK, Carey AL, Staudacher HM, Cummings NK, Burke LM, Hawley JA (2002) Effect of short-term fat adaptation on high-intensity training. Med Sci Sports Exerc 34 (3):449–455

    Article  PubMed  Google Scholar 

  57. Hawley JA, Hopkins WG (1995) Aerobic glycolytic and aerobic lipolytic power systems. A new paradigm with implications for endurance and ultraendurance events. Sports Med 19 (4):240–250

    Article  CAS  PubMed  Google Scholar 

  58. Lambert EV, Speechly DP, Dennis SC, Noakes TD (1994) Enhanced endurance in trained cyclists during moderate intensity exercise following 2 weeks adaptation to a high fat diet. Eur J Appl Physiol Occup Physiol 69 (4):287–293

    Article  CAS  PubMed  Google Scholar 

  59. Muoio DM, Leddy JJ, Horvath PJ, Awad AB, Pendergast DR (1994) Effect of dietary fat on metabolic adjustments to maximal VO2 and endurance in runners. Med Sci Sports Exerc 26 (1):81–88

    Article  CAS  PubMed  Google Scholar 

  60. Venkatraman JT, Feng X, Pendergast D (2001) Effects of dietary fat and endurance exercise on plasma cortisol, prostaglandin E2, interferon-gamma and lipid peroxides in runners. J Am Coll Nutr 20 (5):529–536

    Article  CAS  PubMed  Google Scholar 

  61. Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL (1983) The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism 32 (8):769–776. doi:0026-0495(83)90106-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Burke LM, Angus DJ, Cox GR, Cummings NK, Febbraio MA, Gawthorn K et al. (2000) Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. J Appl Physiol 89 (6):2413–2421

    CAS  PubMed  Google Scholar 

  63. Burke LM, Hawley JA, Angus DJ, Cox GR, Clark SA, Cummings NK et al. (2002) Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Med Sci Sports Exerc 34 (1):83–91

    Article  PubMed  Google Scholar 

  64. Carey AL, Staudacher HM, Cummings NK, Stepto NK, Nikolopoulos V, Burke LM, Hawley JA (2001) Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. J Appl Physiol 91 (1):115–122

    CAS  PubMed  Google Scholar 

  65. Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM (2006) Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab 290 (2):E380–388. doi:00268.2005 [pii]. 10.1152/ajpendo.00268.2005

    Article  CAS  PubMed  Google Scholar 

  66. Lambert EV, Goedecke JH, Zyle C, Murphy K, Hawley JA, Dennis SC, Noakes TD (2001) High-fat diet versus habitual diet prior to carbohydrate loading: effects of exercise metabolism and cycling performance. Int J Sport Nutr Exerc Metab 11 (2):209–225

    Article  CAS  PubMed  Google Scholar 

  67. Rowlands DS, Hopkins WG (2002) Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism 51 (6):678–690. doi:S0026049502987007 [pii]

    Article  CAS  PubMed  Google Scholar 

  68. Havemann L, West SJ, Goedecke JH, Macdonald IA, St Clair Gibson A, Noakes TD, Lambert EV (2006) Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol 100 (1):194–202. doi:00813.2005 [pii]. 10.1152/japplphysiol.00813.2005

    Article  CAS  PubMed  Google Scholar 

  69. Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA (2011) Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab 36 (1):12–22. doi:10.1139/H10-089. h10-089 [pii]

    Article  CAS  PubMed  Google Scholar 

  70. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137 (1):354–366

    Article  CAS  PubMed  Google Scholar 

  71. Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM et al. (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta. J Biol Chem 277 (29):26089–26097. doi:10.1074/jbc.M203997200. M203997200 [pii]

    Article  CAS  PubMed  Google Scholar 

  72. de Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A et al. (2004) Combined cDNA array/RT-PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting. FASEB J 18 (2):350–352. doi:10.1096/fj.03-0342fje. 03-0342fje [pii]

    PubMed  Google Scholar 

  73. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR et al. (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2 (10): e 294. doi:10.1371/journal.pbio.0020294

    Article  CAS  Google Scholar 

  74. Watt MJ, Southgate RJ, Holmes AG, Febbraio MA (2004) Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes. J Mol Endocrinol 33 (2):533–544. doi:33/2/533 [pii]. 10.1677/jme.1.01499

    Article  CAS  PubMed  Google Scholar 

  75. Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19 (11):1498–1500. doi:04-3149fje [pii]. 10.1096/fj.04-3149fje

    CAS  PubMed  Google Scholar 

  76. Russell AP, Hesselink MK, Lo SK, Schrauwen P (2005) Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J 19 (8):986–988. doi:04-3168fje [pii]. 10.1096/fj.04-3168fje

    CAS  PubMed  Google Scholar 

  77. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C et al. (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52 (12):2874–2881

    Article  CAS  PubMed  Google Scholar 

  78. Fritz T, Kramer DK, Karlsson HK, Galuska D, Engfeldt P, Zierath JR, Krook A (2006) Low-intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients. Diabetes Metab Res Rev 22 (6):492–498. doi:10.1002/dmrr.656

    Article  CAS  PubMed  Google Scholar 

  79. de Lange P, Farina P, Moreno M, Ragni M, Lombardi A, Silvestri E et al. (2006) Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB J 20 (14):2579–2581. doi:fj.06-6025fje [pii]. 10.1096/fj.06-6025fje

    Article  PubMed  CAS  Google Scholar 

  80. Tsintzas K, Jewell K, Kamran M, Laithwaite D, Boonsong T, Littlewood J et al. (2006) Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans. J Physiol 575 (Pt 1): 291–303. doi:jphysiol.2006.109892 [pii]. 10.1113/jphysiol.2006.109892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ehrenborg E, Krook A (2009) Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 61 (3):373–393. doi:10.1124/pr.109.001560. 61/3/373 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Nickerson JG, Alkhateeb H, Benton CR, Lally J, Nickerson J, Han XX et al. (2009) Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J Biol Chem 284 (24):16522–16530. doi:10.1074/jbc.M109.004788. M109.004788 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90 (1):367–417. doi:10.1152/physrev.00003.2009. 90/1/367 [pii]

    Article  CAS  PubMed  Google Scholar 

  84. Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86 (1):205–243. doi:86/1/205 [pii]. 10.1152/physrev.00023.2004

    Article  CAS  PubMed  Google Scholar 

  85. Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet LL (2010) Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 299 (2):E180–188. doi:10.1152/ajpendo.00073.2010.ajpendo.00073.2010 [pii]

    CAS  PubMed  Google Scholar 

  86. Burke LM, Hawley JA (2002) Effects of short-term fat adaptation on metabolism and performance of prolonged exercise. Med Sci Sports Exerc 34 (9):1492–1498. doi:10.1249/01.MSS.0000027690.61338.38

    Article  CAS  PubMed  Google Scholar 

  87. Jansson E, Kaijser L (1982) Effect of diet on the utilization of blood-borne and intramuscular substrates during exercise in man. Acta Physiol Scand 115 (1):19–30. doi:10.1111/j.1748-1716.1982.tb07041.x

    Article  CAS  PubMed  Google Scholar 

  88. Kiens B, Essen-Gustavsson B, Gad P, Lithell H (1987) Lipoprotein lipase activity and intramuscular triglyceride stores after long-term high-fat and high-carbohydrate diets in physically trained men. Clin Physiol 7 (1):1–9

    Article  CAS  PubMed  Google Scholar 

  89. Starling RD, Trappe TA, Parcell AC, Kerr CG, Fink WJ, Costill DL (1997) Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol 82 (4):1185–1189

    CAS  PubMed  Google Scholar 

  90. Peters SJ, St Amand TA, Howlett RA, Heigenhauser GJ, Spriet LL (1998) Human skeletal muscle pyruvate dehydrogenase kinase activity increases after a low-carbohydrate diet. Am J Physiol 275 (6 Pt 1):E980–986

    CAS  PubMed  Google Scholar 

  91. Peters SJ, Harris RA, Wu P, Pehleman TL, Heigenhauser GJ, Spriet LL (2001) Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab 281 (6):E1151–1158

    CAS  PubMed  Google Scholar 

  92. Putman CT, Spriet LL, Hultman E, Lindinger MI, Lands LC, McKelvie RS et al. (1993) Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am J Physiol 265 (5 Pt 1):E752–760

    CAS  PubMed  Google Scholar 

  93. Bigrigg JK, Heigenhauser GJ, Inglis JG, LeBlanc PJ, Peters SJ (2009) Carbohydrate refeeding after a high-fat diet rapidly reverses the adaptive increase in human skeletal muscle PDH kinase activity. Am J Physiol Regul Integr Comp Physiol 297 (3):R885–891. doi:10.1152/ajpregu.90604.2008. 90604.2008 [pii]

    Article  CAS  PubMed  Google Scholar 

  94. Dickinson JM, Rasmussen BB (2011) Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Curr Opin Clin Nutr Metab Care 14 (1):83–88. doi:10.1097/MCO.0b013e3283406f3e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pasiakos SM (2012) Exercise and amino acid anabolic cell signaling and the regulation of skeletal muscle mass. Nutrients 4 (7):740–758. doi:10.3390/nu4070740. nutrients-04-00740 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Roth E (2008) Skeletal muscle gain: how much can be achieved by protein and amino acid administration? Curr Opin Clin Nutr Metab Care 11 (1):32–33. doi:10.1097/MCO.0b013e3282f2cc9d. 00075197-200801000-00007 [pii]

    Article  CAS  PubMed  Google Scholar 

  97. Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136 (2):533S–537S. doi:136/2/533S [pii]

    CAS  PubMed  Google Scholar 

  98. Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, Wodzig WK, Dendale P, van Loon LJ (2009) Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr 89 (5):1468–1475. doi:10.3945/ajcn.2008.26668. ajcn.2008.26668 [pii]

    Article  CAS  PubMed  Google Scholar 

  99. Drummond MJ, Dickinson JM, Fry CS, Walker DK, Gundermann DM, Reidy PT et al. (2012) Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am J Physiol Endocrinol Metab 302 (9):E1113–1122. doi:10.1152/ajpendo.00603.2011.ajpendo.00603.2011 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281 (2):E197–206

    CAS  PubMed  Google Scholar 

  101. Tipton KD, Elliott TA, Cree MG, Aarsland AA, Sanford AP, Wolfe RR (2007) Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 292 (1):E71–76. doi:00166.2006 [pii]. 10.1152/ajpendo.00166.2006

    Article  CAS  PubMed  Google Scholar 

  102. Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Volpi E, Rasmussen BB (2009) Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J Appl Physiol 106 (5):1730–1739. doi:10.1152/japplphysiol.90395.2008. 90395.2008 [pii]

    Article  CAS  PubMed  Google Scholar 

  103. Beelen M, Tieland M, Gijsen AP, Vandereyt H, Kies AK, Kuipers H et al. (2008) Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. J Nutr 138 (11):2198–2204. doi:10.3945/jn.108.092924. 138/11/2198 [pii]

    Article  CAS  PubMed  Google Scholar 

  104. Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Physiol 268 (3 Pt 1):E514–520

    CAS  PubMed  Google Scholar 

  105. Biolo G, Williams BD, Fleming RY, Wolfe RR (1999) Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes 48 (5):949–957

    Article  CAS  PubMed  Google Scholar 

  106. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273 (1 Pt 1):E99–107

    CAS  PubMed  Google Scholar 

  107. Cribb PJ, Hayes A (2006) Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc 38 (11):1918–1925. doi:10.1249/01.mss.0000233790.08788.3e. 00005768-200611000-00006 [pii]

    Article  PubMed  Google Scholar 

  108. Hartman JW, Tang JE, Wilkinson SB, Tarnopolsky MA, Lawrence RL, Fullerton AV, Phillips SM (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86 (2):373–381. doi:86/2/373 [pii]

    CAS  PubMed  Google Scholar 

  109. Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB et al. (2009) Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr 89 (1):161–168. doi:10.3945/ajcn.2008.26401. ajcn.2008.26401 [pii]

    Article  CAS  PubMed  Google Scholar 

  110. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107 (3):987–992. doi:10.1152/japplphysiol.00076.2009. 00076.2009 [pii]

    Article  CAS  PubMed  Google Scholar 

  111. Wilkinson SB, Tarnopolsky MA, Macdonald MJ, Macdonald JR, Armstrong D, Phillips SM (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85 (4):1031–1040. doi:85/4/1031 [pii]

    CAS  PubMed  Google Scholar 

  112. Burk A, Timpmann S, Medijainen L, Vahi M, Oopik V (2009) Time-divided ingestion pattern of casein-based protein supplement stimulates an increase in fat-free body mass during resistance training in young untrained men. Nutr Res 29 (6):405–413. doi:10.1016/j.nutres.2009.03.008. S0271-5317(09)00053-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  113. Rehner G, Daniel H (2010) Biochemie der Ernährung. 3. Auflage edn. Spektrum Akademischer Verlag, Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Stuparits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Stuparits, P., Roth, E., Wagner, KH. (2018). Stoffwechselprinzipien der Ernährung. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_13

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics