Skip to main content

Anpassung an Krafttraining

  • Chapter
  • First Online:

Zusammenfassung

Ziel des Krafttrainings ist es, Muskelmasse und Kraft zu steigern. Um dies zu erreichen, führen Sportler ein progressives Krafttraining durch, um mit hohen Widerständen die Innervation der trainierten Muskeln, die Muskelmasse und die Kraft per Muskelquerschnitt zu erhöhen. Die Trainierbarkeit der Kraft und die absolute Kraft hängen zudem von dem Talent ab, welches von Variationen der DNA-Sequenz abhängt. Krafttraining aktiviert die mTOR-Kaskade und diese Aktivierung ist für die Erhöhung der Muskelmasse und damit die Hypertrophie notwendig. Der Myostatin-Smad-Signalweg reguliert die Muskelmasse auch, doch die Rolle bei der Anpassung an Krafttraining ist unklar. Zum Schluss dieses Kapitels wird auf die Satellitenzellen eingegangen, die bei der Regeneration und Anpassung nach einem Kraftreiz eine Sonderstellung einnehmen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Kelley G (1996) Mechanical overload and skeletal muscle fiber hyperplasia: a meta-analysis. J Appl Physiol (1985) 81 (4):1584–1588

    CAS  PubMed  Google Scholar 

  2. DeLorme T (1945) Restoration of muscle power by heavy-resistance exercises. J Bone Joint Surg Am 27:645

    Google Scholar 

  3. Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ et al. (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37 (6):964–972. doi:00005768-200506000-00010 [pii]

    PubMed  Google Scholar 

  4. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS et al. (2002) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34 (2):364–380

    Article  PubMed  Google Scholar 

  5. Aubert B, Barate R, Boutigny D, Couderc F, Gaillard JM, Hicheur A et al. (2004) Measurement of the B0→ΦK*0 decay amplitudes. Phys Rev Lett 93 (23):231804

    Article  CAS  PubMed  Google Scholar 

  6. Carpinelli RN (2009) Challenging the American Collage of Sports and Medicine 2009 Position Stand on Resistance Training Medicina Sportiva 13 (2):131–137. doi:10.2478/v10036-009-0020-7

  7. Peeters MW, Thomis MA, Beunen GP, Malina RM (2009) Genetics and sports: an overview of the pre-molecular biology era. Med Sport Sci 54:28–42. doi:10.1159/000235695. 000235695 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Ontell MP, Sopper MM, Lyons G, Buckingham M, Ontell M (1993) Modulation of contractile protein gene expression in fetal murine crural muscles: emergence of muscle diversity. Dev Dyn 198 (3):203–213. doi:10.1002/aja.1001980306

    Article  CAS  PubMed  Google Scholar 

  9. Lexell J, Taylor CC, Sjostrom M (1988) What ist the Cause of the Aging Atrophy? Total Number, Size and Proportion of different Fiber Types studied in whole Vastus Muscle from 15- to 83-year-old Men. J Neurol Sci 84:275–294

    Article  CAS  PubMed  Google Scholar 

  10. Bouchard C, Malina RM, Pérusse L (1997) Genetics of fitness and physical performance. Human Kinetics Publ., Champaign, Ill.

    Google Scholar 

  11. Silventoinen K, Magnusson PK, Tynelius P, Kaprio J, Rasmussen F (2008) Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol 32 (4):341–349. doi:10.1002/gepi.20308

    Article  PubMed  Google Scholar 

  12. Heron MI, Richmond FJ (1993) In-series fiber architecture in long human muscles. J Morphol 216 (1):35–45. doi:10.1002/jmor.1052160106

    Article  CAS  PubMed  Google Scholar 

  13. Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. Journal of applied physiology 89 (1):81–88

    CAS  PubMed  Google Scholar 

  14. Forsberg AM, Nilsson E, Wernemann J, Bergstrom J, Hultman E (1991) Muscle composition in relation to age and sex. Clin Sci (Lond) 81:249–256

    Article  CAS  Google Scholar 

  15. Carroll CC, Carrithers JA, Trappe TA (2004) Contractile protein concentrations in human single muscle fibers. J Muscle Res Cell Motil 25 (1):55–59

    Article  CAS  PubMed  Google Scholar 

  16. Miller BF, Olesen JL, Hansen M, Dossing S, Crameri RM, Welling RJ et al. (2005) Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise. J Physiol 567 (Pt 3): 1021–1033. doi:jphysiol.2005.093690[pii]. 10.1113/jphysiol.2005.093690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bohe J, Low JF, Wolfe RR, Rennie MJ (2001) Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J Physiol 532 (Pt 2): 575–579. doi:PHY_12181[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273 (1 Pt 1):E99–107

    CAS  PubMed  Google Scholar 

  19. Tipton KD, Ferrando AA, Phillips SM, Doyle D, Jr., Wolfe RR (1999) Postexercise net protein synthesis in human muscle from orally administered amino acids. Am J Physiol 276 (4 Pt 1):E628–634

    CAS  PubMed  Google Scholar 

  20. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351 (Pt 1):95–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276 (1 Pt 1):C120–127

    CAS  PubMed  Google Scholar 

  22. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R et al. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3 (11):1014–1019. doi:10.1038/ncb1101-1014. ncb1101-1014 [pii]

    Article  CAS  PubMed  Google Scholar 

  23. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL et al. (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587 (Pt 7): 1535–1546. doi:10.1113/jphysiol.2008.163816. jphysiol.2008.163816 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, Hornberger TA (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589 (Pt 22): 5485–5501. doi:10.1113/jphysiol.2011.218255. jphysiol.2011.218255 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99 (14):9213–9218. doi:10.1073/pnas.142166599. 142166599 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodman CA, Miu MH, Frey JW, Mabrey DM, Lincoln HC, Ge Y et al. (2010) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21 (18):3258–3268. doi:10.1091/mbc.E10-05-0454. E10-05-0454 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270 (20):12109–12116

    Article  CAS  PubMed  Google Scholar 

  28. Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E et al. (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24 (21):9295–9304. doi:24/21/9295 [pii]. 10.1128/MCB.24.21.9295-9304.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim E, Guan KL (2009) RAG GTPases in nutrient-mediated TOR signaling pathway. Cell Cycle 8 (7):1014–1018. doi:8124 [pii]

    Article  CAS  PubMed  Google Scholar 

  30. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115 (5):577–590. doi:S0092867403009292[pii]

    Article  CAS  PubMed  Google Scholar 

  31. Holz MK, Ballif BA, Gygi SP, Blenis J (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123 (4):569–580. doi:S0092-8674(05)01157-8[pii]. 10.1016/j.cell.2005.10.024

    Article  CAS  PubMed  Google Scholar 

  32. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387 (6628):83–90. doi:10.1038/387083a0

    Article  CAS  PubMed  Google Scholar 

  33. Lee SJ (2007) Quadrupling muscle mass in mice by targeting TGF-beta signaling pathways. PloS one 2 (8):e789. doi:10.1371/journal.pone.0000789

    Article  Google Scholar 

  34. Sutrave P, Kelly AM, Hughes SH (1990) ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev 4 (9):1462–1472

    Article  CAS  PubMed  Google Scholar 

  35. Mendias CL, Marcin JE, Calerdon DR, Faulkner JA (2006) Contractile properties of EDL and soleus muscles of myostatin-deficient mice. J Appl Physiol (1985) 101 (3):898–905. doi:00126.2006 [pii]. 10.1152/japplphysiol.00126.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al. (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350 (26):2682–2688. doi:10.1056/NEJMoa040933. 350/26/2682 [pii]

    Article  CAS  PubMed  Google Scholar 

  37. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3 (5):79. doi:07-PLGE-RA-0050R2 [pii]. 10.1371/journal.pgen.0030079

    Article  Google Scholar 

  38. Kim JS, Petrella JK, Cross JM, Bamman MM (2007) Load-mediated downregulation of myostatin mRNA is not sufficient to promote myofiber hypertrophy in humans: a cluster analysis. J Appl Physiol (1985) 103 (5):1488–1495. doi:01194.2006 [pii]. 10.1152/japplphysiol.01194.2006

    Article  CAS  PubMed  Google Scholar 

  39. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S et al. (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300 (4):965–971. doi:S0006291X02029534[pii]

    Article  CAS  PubMed  Google Scholar 

  40. Welle S, Bhatt K, Pinkert CA, Tawil R, Thornton CA (2007) Muscle growth after postdevelopmental myostatin gene knockout. Am J Physiol Endocrinol Metab 292 (4):E985–991. doi:00531.2006 [pii]. 10.1152/ajpendo.00531.2006

    Article  CAS  PubMed  Google Scholar 

  41. Welle S, Bhatt K, Pinkert CA (2006) Myofibrillar protein synthesis in myostatin-deficient mice. Am J Physiol Endocrinol Metab 290 (3):E409–415. doi:00433.2005 [pii]. 10.1152/ajpendo.00433.2005

    Article  CAS  PubMed  Google Scholar 

  42. Welle S, Mehta S, Burgess K (2011) Effect of postdevelopmental myostatin depletion on myofibrillar protein metabolism. Am J Physiol Endocrinol Metab 300 (6):E993–E1001. doi:10.1152/ajpendo.00509.2010.ajpendo.00509.2010 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allen DL, Roy RR, Edgerton VR (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22 (10):1350–1360. doi:10.1002/(SICI)1097-4598(199910)22:10<1350::AID-MUS3>3.0.CO;2-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  44. O`Conner RS, Pavlath GK (2007) Point:Counterpoint:Satellite Cell Addition is/is not obligatory for Skeletal Muscle Hypertrophy. J Appl Physiol 103:1099–1100

    Article  Google Scholar 

  45. Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L et al. (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci U S A 106 (18):7479–7484. doi:10.1073/pnas.0811129106. 0811129106 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E et al. (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23 (11):3896–3905. doi:10.1096/fj.09-131870. fj.09-131870 [pii]

    Article  CAS  PubMed  Google Scholar 

  47. Rosenblatt JD, Parry DJ (1992) Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J Appl Physiol (1985) 73 (6):2538–2543

    CAS  PubMed  Google Scholar 

  48. McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB et al. (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138 (17):3657–3666. doi:10.1242/dev.068858. 138/17/3657 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138 (17):3639–3646. doi:10.1242/dev.067595. 138/17/3639 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45 (2–3):255–263

    Article  CAS  PubMed  Google Scholar 

  51. Baar K (2006) Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc 38 (11):1939–1944. doi:10.1249/01.mss.0000233799.62153.19. 00005768-200611000-00009 [pii]

    Article  PubMed  Google Scholar 

  52. Nader GA (2006) Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc 38 (11):1965–1970. doi:10.1249/01.mss.0000233795.39282.33. 00005768-200611000-00013 [pii]

    Article  PubMed  Google Scholar 

  53. Coffey VG, Pilegaard H, Garnham AP, O'Brien BJ, Hawley JA (2009) Consecutive bouts of diverse contractile activity alter acute responses in human skeletal muscle. J Appl Physiol (1985) 106 (4):1187–1197. doi:10.1152/japplphysiol.91221.2008.91221.2008 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Coffey VG, Jemiolo B, Edge J, Garnham AP, Trappe SW, Hawley JA (2009) Effect of consecutive repeated sprint and resistance exercise bouts on acute adaptive responses in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297 (5):R1441–1451. doi:10.1152/ajpregu.00351.2009.00351.2009 [pii]

    Article  CAS  PubMed  Google Scholar 

  55. de Souza EO, Tricoli V, Roschel H, Brum PC, Bacurau AV, Ferreira JC et al. (2013) Molecular adaptations to concurrent training. Int J Sports Med 34 (3):207–213. doi:10.1055/s-0032-1312627

    PubMed  Google Scholar 

  56. Hawley JA (2009) Molecular responses to strength and endurance training: are they incompatible? Appl Physiol Nutr Metab 34 (3):355–361. doi:10.1139/H09-023. h09-023 [pii]

    Article  CAS  PubMed  Google Scholar 

  57. Wackerhage H (2014) Molecular Exercise Physiology: An introduction. Routledge, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Wackerhage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Wackerhage, H., Oesen, S., Hofmann, M., Tschan, H. (2018). Anpassung an Krafttraining. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_12

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics