Skip to main content

Sphingolipids in Psychiatric Disorders and Pain Syndromes

  • Chapter
  • First Online:
Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Despite the high prevalence and devastating impact of psychiatric disorders, little is known about their etiopathology. In this review, we provide an overview on the participation of sphingolipids and enzymes responsible for their metabolism in mechanisms underlying psychiatric disorders. We focus on the pathway from sphingomyelin to proapoptotic ceramide and the subsequent metabolism of ceramide to sphingosine, which is in turn phosphorylated to yield anti-apoptotic sphingosine-1-phosphate (S1P).

The sphingomyelinase/ceramide system has been linked to effects of reactive oxygen species and proinflammatory cytokines in the central nervous system as well as to synaptic transmission. Compared to ubiquitously expressed acid sphingomyelinase, acid and neutral ceramidase and neutral sphingomyelinase are highly active in brain regions. Depressed patients show elevated plasma ceramide levels and increased activities of acid sphingomyelinase which is functionally inhibited by many anti-depressive drugs. Exposure to alcohol is associated with an activation of acid and neutral sphingomyelinase observed in cell culture, mouse models and in alcohol-dependent patients and with increased concentrations of ceramide in various organs.

Levels of sphingomyelin and ceramide are altered in erythrocytes and post-mortem brain tissues of schizophrenic patients in addition to changes in expression patterns for serine palmitoyltransferase and acid ceramidase leading to impaired myelination. After induction of anxiety-like behavior in animal models, higher serum levels of S1P were reported to lead to neurodegeneration. Correspondingly, S1P infusion appeared to increase anxiety-like behavior. Significantly upregulated levels of the endogenous ceramide catabolite N,N-dimethylsphingosine were observed in rat models of allodynia. Conversely, rats injected intrathecally with N,N-dimethylsphingosine developed mechanical allodynia. Moreover, S1P has been implicated in spinal nociceptive processing.

The increasing interest in lipidomics and improved analytical methods led to growing insight into the connection between psychiatric and neurological disorders and sphingolipid metabolism and may once provide new targets and strategies for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt A, Nisenbaum ES, Bleakman D, Witkin JM (2006) A role for AMPA receptors in mood disorders. Biochem Pharmacol 71:1273–88

    Google Scholar 

  • Alexander GM, van Rijn MA, van Hilten JJ, Perreault MJ, Schwartzman RJ (2005) Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 116:213–219

    Article  PubMed  CAS  Google Scholar 

  • Baraona E, Lieber CS (1979) Effects of ethanol on lipid metabolism. J Lipid Res 20:289–315

    PubMed  CAS  Google Scholar 

  • Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG (2008) A β-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–136

    Article  PubMed  CAS  Google Scholar 

  • Belmaker RH, Agam G (2008) Major depressive disorder. N Engl J Med 358:55–68

    Article  PubMed  CAS  Google Scholar 

  • Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Bitanihirwe BKY, Woo TUW (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35:878–893

    Article  PubMed  CAS  Google Scholar 

  • Bryant L, Doyle T, Chen Z, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Mazzon E, Petrusca DN, Petrache I, Salvemini D (2009) Spinal ceramide and neuronal apoptosis in morphine antinociceptive tolerance. Neurosci Lett 463:49–53

    Article  PubMed  CAS  Google Scholar 

  • Chang GHF, Barbaro NM, Pieper RO (2000) Phosphatidylserine-dependent phagocytosis of apoptotic glioma cells by normal human microglia, astrocytes, and glioma cells. Neuro Oncol 2:174–183

    PubMed  CAS  Google Scholar 

  • Cherayil GD (1969) Estimation of glycolipids in four selected lobes of human brain in neurological diseases. J Neurochem 16:913–920

    Article  PubMed  CAS  Google Scholar 

  • Cole AL, Lee PJ, Hughes DA, Deegan PB, Waldek S, Lachmann RH (2007) Depression in adults with Fabry disease: a common and under-diagnosed problem. J Inherit Metab Dis. 30:943–951

    Google Scholar 

  • Conigrave KM, Degenhardt LJ, Whitfield JB, Saunders JB, Helander A, Tabakoff B (2002) CDT, GGT, and AST as markers of alcohol use: the WHO/ISBRA collaborative project. Alcohol Clin Exp Res 26:332–339

    Article  PubMed  CAS  Google Scholar 

  • Contreras FX, Ernst AM, Haberkant P, Björkholm P, Lindahl E, Gönen B, Tischer C, Elofsson A, von Heijne G, Thiele C, Pepperkok R, Wieland F, Brügger B (2012) Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481:525–529

    Article  PubMed  CAS  Google Scholar 

  • Corcoran CA, He Q, Ponnusamy S, Ogretmen B, Huang Y, Sheikh MS (2008) Neutral sphingomyelinase-3 is a DNA damage and nongenotoxic stress-regulated gene that is deregulated in human malignancies. Mol Cancer Res 6:795–807

    Article  PubMed  CAS  Google Scholar 

  • Coste O, Brenneis C, Linke B, Pierre S, Maeurer C, Becker W, Schmidt H, Gao W, Geisslinger G, Scholich K (2008a) Sphingosine 1-phosphate modulates spinal nociceptive processing. J Biol Chem 283:32442–32451

    Article  PubMed  CAS  Google Scholar 

  • Coste O, Pierre S, Marian C, Brenneis C, Angioni C, Schmidt H, Popp L, Geisslinger G, Scholich K (2008b) Antinociceptive activity of the S1P-receptor agonist FTY720. J Cell Mol Med 12:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou J (2006) Cytokines and alcohol. Alcohol Clin Exp Res 30:720–730

    Article  PubMed  CAS  Google Scholar 

  • Dadabhoy D, Crofford LJ, Spaeth M, Russell IJ, Clauw DJ (2008) Biology and therapy of fibromyalgia. Evidence-based biomarkers for fibromyalgia syndrome. Arthritis Res Ther 10:211

    Article  PubMed  CAS  Google Scholar 

  • Davis CN, Tabarean I, Gaidarova S, Behrens MM, Bartfai T (2006) IL-1β induces a MyD88-dependent and ceramide-mediated activation of Src in anterior hypothalamic neurons. J Neurochem 98:1379–1389

    Article  PubMed  CAS  Google Scholar 

  • Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat Genet 27:309–312

    Article  PubMed  CAS  Google Scholar 

  • de Miranda AS, Lacerda-Queiroz N, de Carvalho VM, Rodrigues DH, Rachid MA, Quevedo J, Teixeira AL (2011) Anxiety-like behavior and proinflammatory cytokine levels in the brain of C57BL/6 mice infected with Plasmodium berghei (strain ANKA). Neurosci Lett 491:202–206

    Article  PubMed  CAS  Google Scholar 

  • Deaciuc IV, Nikolova-Karakashian M, Fortunato F, Lee EY, Hill DB, McClain CJ (2000) Apoptosis and dysregulated ceramide metabolism in a murine model of alcohol-enhanced lipopolysaccharide hepatotoxicity. Alcohol Clin Exp Res 24:1557–1565

    Article  PubMed  CAS  Google Scholar 

  • Demirkan A, van Duijn CM, Ugocsai P, Isaacs A, Pramstaller PP, Liebisch G, Wilson JF, Johansson A, Rudan I, Aulchenko YS, Kirichenko AV, Janssens ACJW, Jansen RC, Gnewuch C, Domingues FS, Pattaro C, Wild SH, Jonasson I, Polasek O, Zorkoltseva IV, Hofman A, Karssen LC, Struchalin M, Floyd J, Igl W, Biloglav Z, Broer L, Pfeufer A, Pichler I, Campbell S, Zaboli G, Kolcic I, Rivadeneira F, Huffman J, Hastie ND, Uitterlinden A, Franke L, Franklin CS, Vitart V, Nelson CP, Preuss M, Bis JC, O’Donnell CJ, Franceschini N, Witteman JCM, Axenovich T, Oostra BA, Meitinger T, Hicks AA, Hayward C, Wright AF, Gyllensten U, Campbell H, Schmitz G (2012) Genome-wide association study identifies novel loci associated with circulating phospho- and sphingolipid concentrations. PLoS Genet 8:e1002490

    Article  PubMed  CAS  Google Scholar 

  • Demirkan A, Isaacs A, Ugocsai P, Liebisch G, Struchalin M, Rudan I, Wilson JF, Pramstaller PP, Gyllensten U, Campbell H, Schmitz G, Oostra BA, Van Duijn CM (2012) Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res pii:S0022-3956(12)00341-X

    Google Scholar 

  • Demisch L, Heinz K, Gerbaldo H, Kirsten R (1992) Increased concentrations of phosphatidylinositol (PI) and decreased esterification of arachidonic acid into phospholipids in platelets from patients with schizoaffective disorders or atypic phasic psychoses. Prostaglandins Leukot Essent Fatty Acids 46:47–52

    Article  PubMed  CAS  Google Scholar 

  • DeVito WJ, Stone S, Shamgochian M (2000) Ethanol increases the neurotoxic effect of tumor necrosis factor-alpha in cultured rat astrocytes. Alcohol Clin Exp Res 24:82–92

    PubMed  CAS  Google Scholar 

  • Doyle T, Chen Z, Obeid LM, Salvemini D (2011) Sphingosine-1-phosphate acting via the S1P receptor is a downstream signaling pathway in ceramide-induced hyperalgesia. Neurosci Lett 499:4–8

    Article  PubMed  CAS  Google Scholar 

  • Duan RD, Hertervig E, Nyberg L, Hauge T, Sternby B, Lillienau J, Farooqi A, Nilsson Ã… (1996) Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci 41:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Edsall LC, Van Brocklyn JR, Cuvillier O, Kleuser B, Spiegel S (1998) N, N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide. Biochemistry 37:12892–12898

    Article  PubMed  CAS  Google Scholar 

  • El Bawab S, Bielawska A, Hannun YA (1999) Purification and characterization of a membrane-bound nonlysosomal ceramidase from rat brain. J Biol Chem 274:27948–27955

    Article  PubMed  CAS  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA (2004) Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 36:131–137

    Article  PubMed  CAS  Google Scholar 

  • Fernández A, Colell A, Garcia-Ruiz C, Fernandez-Checa JC (2008) Cholesterol and sphingolipids in alcohol-induced liver injury. J Gastroenterol Hepatol 23(Suppl 1):S9–S15

    Article  PubMed  CAS  Google Scholar 

  • Fukuzako H, Fukuzako T, Hashiguchi T, Kodama S, Takigawa M, Fujimoto T (1999) Changes in levels of phosphorus metabolites in temporal lobes of drug-naive schizophrenic patients. Am J Psychiatry 156:1205–1208

    PubMed  CAS  Google Scholar 

  • Gao YJ, Zhang L, Samad OA, Suter MR, Yasuhiko K, Xu ZZ, Park JY, Lind AL, Ma Q, Ji RR (2009) JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci 29:4096–4108

    Article  PubMed  CAS  Google Scholar 

  • Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP, von Eckardstein A, Brown RH, Hornemann T, Eichler FS (2011) Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J Clin Invest 121:4735–4745

    Article  PubMed  CAS  Google Scholar 

  • Gatt S (1963) Enzymic hydrolysis and synthesis of ceramides. J Biol Chem 238:3131–3133

    PubMed  CAS  Google Scholar 

  • Gilmore N, Cherian L, Klemm WR (1991) Ganglioside or sialic acid attenuates ethanol-induced decrements in locomotion, nose-poke exploration, and anxiety, but not body temperature. Prog Neuropsychopharmacol Biol Psychiatry 15:91–104

    Article  PubMed  CAS  Google Scholar 

  • Glasier MM, Sutton RL, Stein DG (1995) Effects of unilateral entorhinal cortex lesion and ganglioside GM1 treatment on performance in a novel water maze task. Neurobiol Learn Mem 64:203–214

    Article  PubMed  CAS  Google Scholar 

  • Gracia-Garcia P, Rao V, Haughey NJ, Banduru VVR, Smith G, Rosenberg PB, Lobo A, Lyketsos CG, Mielke MM (2011) Elevated plasma ceramides in depression. J Neuropsychiatry Clin Neurosci 23:215–218

    Article  PubMed  CAS  Google Scholar 

  • Grassmé H, Jendrossek V, Riehle A, von KG, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Google Scholar 

  • Grassmé H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280:26256–26262

    Article  PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Cordon-Cardo C, Bayoumy S, Garzotto M, McLoughlin M, Gallily R, Edwards CK III, Schuchman EH, Fuks Z, Kolesnick R (1997) Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J Exp Med 186:1831–1841

    Article  PubMed  CAS  Google Scholar 

  • Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochem Biophys Acta 1758:2016–2026

    Article  PubMed  CAS  Google Scholar 

  • Haselhorst U, Schenk H, Beyer I, Uebelhack R, Franke E, Kielstein V (1988) Abnormality of gangliosides in erythrocyte membranes of schizophrenic patients. Clin Physiol Biochem 6:281–284

    PubMed  CAS  Google Scholar 

  • Hicks AA, Pramstaller PP, Johansson A, Vitart V, Rudan I, Ugocsai P, Aulchenko Y, Franklin CS, Liebisch G, Erdmann J, Jonasson I, Zorkoltseva IV, Pattaro C, Hayward C, Isaacs A, Hengstenberg C, Campbell S, Gnewuch C, Janssens ACJW, Kirichenko AV, König IR, Marroni F, Polasek O, Demirkan A, Kolcic I, Schwienbacher C, Igl W, Biloglav Z, Witteman JCM, Pichler I, Zaboli G, Axenovich TI, Peters A, Schreiber S, Wichmann HE, Schunkert H, Hastie N, Oostra BA, Wild SH, Meitinger T, Gyllensten U, van Duijn CM, Wilson JF, Wright A, Schmitz G, Campbell H (2009) Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet 5:e1000672

    Article  PubMed  CAS  Google Scholar 

  • Hitzemann R, Hirschowitz J, Panini A, Mark C, Garver D (1984) Membranes, methylation and lithium responsive psychoses. Nutr Health 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Hitzemann R, Mark C, Hirschowitz J, Garver D (1985) Characteristics of phospholipid methylation in human erythrocyte ghosts: relationship(s) to the psychoses and affective disorders. Biol Psychiatry 20:397–407

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Tomiuk S, Wolff G, Stoffel W (2000) Cloning and characterization of the mammalian brain-specific, Mg2+-dependent neutral sphingomyelinase. Proc Natl Acad Sci USA 97:5895–5900

    Article  PubMed  CAS  Google Scholar 

  • Hofmeister R, Wiegmann K, Korherr C, Bernardo K, Krönke M, Falk W (1997) Activation of acid sphingomyelinase by interleukin-1 (IL-1) requires the IL-1 receptor accessory protein. J Biol Chem 272:27730–27736

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JM, Angelova MI, Kinnunen PK (2000) Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys J 78:830–838

    Article  PubMed  CAS  Google Scholar 

  • Horrobin DF (1998) The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr Res 30:193–208

    Google Scholar 

  • Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    Article  PubMed  CAS  Google Scholar 

  • Jafurulla M, Pucadyil TJ, Chattopadhyay A (2008) Effect of sphingomyelinase treatment on ligand binding activity of human serotonin1A receptors. Biochim Biophys Acta 1778:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Suh SH, Yoo HS, Lee YM, Oh S (2008) Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem Res 33:842–851

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Kim D, Lee Y, Moon S, Oh S (2011) Modulation of sphingosine 1-phosphate and tyrosine hydroxylase in the stress-induced anxiety. Neurochem Res 36:258–267

    Article  PubMed  CAS  Google Scholar 

  • Jung SY, Suh JH, Park HJ, Jung KM, Kim MY, Na DS, Kim DK (2000) Identification of multiple forms of membrane-associated neutral sphingomyelinase in bovine brain. J Neurochem 75:1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Keshavan MS, Mallinger AG, Pettegrew JW, Dippold C (1993) Erythrocyte membrane phospholipids in psychotic patients. Psychiatry Res 49:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kim SK, Ahn KH, Ji JE, Choi JM, Jeon HJ, Jung SY, Jung KM, Kim DK (2010) Neutral sphingomyelinase 2 induces dopamine uptake through regulation of intracellular calcium. Cell Signal 22:865–870

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Berg PA (1995) High incidence of antibodies to 5-hydroxytryptamine, gangliosides and phospholipids in patients with chronic fatigue and fibromyalgia syndrome and their relatives: evidence for a clinical entity of both disorders. Eur J Med Res 1:21–26

    PubMed  CAS  Google Scholar 

  • Klein R, Bänsch M, Berg PA (1992) Clinical relevance of antibodies against serotonin and gangliosides in patients with primary fibromyalgia syndrome. Psychoneuroendocrinology 17:593–598

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Medlin A, Bleich S, Jendrossek V, Henkel AW, Wiltfang J, Gulbins E (2005) High activity of acid sphingomyelinase in major depression. J Neural Transm 112:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E (2008) Identification of new functional inhibitors of acid sphingomyelinase using a structure–property-activity relation model. J Med Chem 51:219–237

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Reichel M, Tripal P, Groemer TW, Henkel AW, Mühle C, Gulbins E (2009) The role of ceramide in major depressive disorder. Eur Arch Psychiatry Clin Neurosci 259(Suppl 2):S199–S204

    Article  PubMed  Google Scholar 

  • Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, Liedl KR, Gulbins E, Tripal P (2011) Identification of novel functional inhibitors of acid sphingomyelinase. PLoS One 6:e23852

    Article  PubMed  CAS  Google Scholar 

  • Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Krönke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281:13784–13793

    Article  PubMed  CAS  Google Scholar 

  • Kubicki M, McCarley RW, Shenton ME (2005) Evidence for white matter abnormalities in schizophrenia. Curr Opin Psychiatry 18:121–134

    Article  PubMed  Google Scholar 

  • Latorre E, Aragonés MD, Fernández I, Catalán RE (1999) Platelet-activating factor modulates brain sphingomyelin metabolism. Eur J Biochem 262:308–314

    Article  PubMed  CAS  Google Scholar 

  • Lee YK, Kim HL, Kim YL, Im DS (2007) Multiple actions of dimethylsphingosine in 1321N1 astrocytes. Mol Cells 23:11–16

    PubMed  CAS  Google Scholar 

  • Lesch P, Schmidt E, Schmidt FW (1973) Effects of chronic alcohol abuse on the fatty acid composition of major lipids in the human brain. Hepatocerebral degeneration II. Z Klin Chem Klin Biochem 11:159–166

    PubMed  CAS  Google Scholar 

  • Levade T, Salvayre R, Potier M, Douste-Blazy L (1986) Interindividual heterogeneity of molecular weight of human brain neutral sphingomyelinase determined by radiation inactivation method. Neurochem Res 11:1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW (2010) Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels. Am J Physiol Gastrointest Liver Physiol 298:G1004–G1012

    Article  PubMed  CAS  Google Scholar 

  • Liangpunsakul S, Rahmini Y, Ross RA, Zhao Z, Xu Y, Crabb DW (2012) Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol 302:G515–G523

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Wang JY, Hertervig E, Cheng Y, Nilsson A, Duan RD (2000) Activation of neutral sphingomyelinase participates in ethanol-induced apoptosis in Hep G2 cells. Alcohol Alcohol 35:569–573

    Article  PubMed  CAS  Google Scholar 

  • MacQueen GM, Rosebush PI, Mazurek MF (1998) Neuropsychiatric aspects of the adult variant of Tay-Sachs disease. J Neuropsychiatry Clin Neurosci 10:10–19

    PubMed  CAS  Google Scholar 

  • Mann JJ (1999) Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21:99S–105S

    PubMed  CAS  Google Scholar 

  • Marí M, Colell A, Morales A, Pañeda C, Varela-Nieto I, Garcia-Ruíz C, Fernández-Checa JC (2004) Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 113:895–904

    PubMed  Google Scholar 

  • Mora A, Sabio G, Risco AM, Cuenda A, Alonso JC, Soler G, Centeno F (2002) Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. Cell Signal 14:557–562

    Article  PubMed  CAS  Google Scholar 

  • Müller N, Ackenheil M (1998) Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 22:1–33

    Article  PubMed  Google Scholar 

  • Muscoli C, Doyle T, Dagostino C, Bryant L, Chen Z, Watkins LR, Ryerse J, Bieberich E, Neumman W, Salvemini D (2010) Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids. J Neurosci 30:15400–15408

    Article  PubMed  CAS  Google Scholar 

  • Musselman DL, Evans DL, Nemeroff CB (1998) The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch Gen Psychiatry 55:580–592

    Article  PubMed  CAS  Google Scholar 

  • Nalivaeva NN, Rybakina EG, Pivanovich IY, Kozinets IA, Shanin SN, Bartfai T (2000) Activation of neutral sphingomyelinase by IL-1beta requires the type 1 interleukin 1 receptor. Cytokine 12:229–232

    Article  PubMed  CAS  Google Scholar 

  • Narayan S, Kass KE, Thomas EA (2007) Chronic haloperidol treatment results in a decrease in the expression of myelin/oligodendrocyte-related genes in the mouse brain. J Neurosci Res 85:757–765

    Article  PubMed  CAS  Google Scholar 

  • Narayan S, Head SR, Gilmartin TJ, Dean B, Thomas EA (2009) Evidence for disruption of sphingolipid metabolism in schizophrenia. J Neurosci Res 87:278–288

    Article  PubMed  CAS  Google Scholar 

  • Ndengele MM, Cuzzocrea S, Masini E, Vinci MC, Esposito E, Muscoli C, Petrusca DN, Mollace V, Mazzon E, Li D, Petrache I, Matuschak GM, Salvemini D (2009) Spinal ceramide modulates the development of morphine antinociceptive tolerance via peroxynitrite-mediated nitroxidative stress and neuroimmune activation. J Pharmacol Exp Ther 329:64–75

    Article  PubMed  CAS  Google Scholar 

  • Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11:851–876

    Article  PubMed  CAS  Google Scholar 

  • Nie H, Weng HR (2010) Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats. J Neurophysiol 103:2570–2580

    Article  PubMed  CAS  Google Scholar 

  • Norman E, Cutler RG, Flannery R, Wang Y, Mattson MP (2010) Plasma membrane sphingomyelin hydrolysis increases hippocampal neuron excitability by sphingosine-1-phosphate mediated mechanisms. J Neurochem 114:430–439

    Article  PubMed  CAS  Google Scholar 

  • Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616

    Article  PubMed  CAS  Google Scholar 

  • Okino N, He X, Gatt S, Sandhoff K, Ito M, Schuchman EH (2003) The reverse activity of human acid ceramidase. J Biol Chem 278:29948–29953

    Google Scholar 

  • Olsson NU, Harding AJ, Harper C, Salem N Jr (1996) High-performance liquid chromatography method with light-scattering detection for measurements of lipid class composition: analysis of brains from alcoholics. J Chromatogr B Biomed Appl 681:213–218

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Kikusui T, Sasaki N, Ichikawa M, Mori Y, Murakami-Murofushi K (2008) Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice. Neuroscience 156:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Pascual M, Valles SL, Renau-Piqueras J, Guerri C (2003) Ceramide pathways modulate ethanol-induced cell death in astrocytes. J Neurochem 87:1535–1545

    Article  PubMed  CAS  Google Scholar 

  • Patti GJ, Yanes O, Shriver LP, Courade JP, Tautenhahn R, Manchester M, Siuzdak G (2012) Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat Chem Biol 8:232–234

    Article  PubMed  CAS  Google Scholar 

  • Perrotta C, Bizzozero L, Cazzato D, Morlacchi S, Assi E, Simbari F, Zhang Y, Gulbins E, Bassi MT, Rosa P, Clementi E (2010) Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J Biol Chem 285:40240–40251

    Article  PubMed  CAS  Google Scholar 

  • Ponizovsky AM, Modai I, Nechamkin Y, Barshtein G, Ritsner MS, Yedgar S, Lecht S, Bergelson LD (2001) Phospholipid patterns of erythrocytes in schizophrenia: relationships to symptomatology. Schizophr Res 52:121–126

    Article  PubMed  CAS  Google Scholar 

  • Posse de Chaves E, Sipione S (2010) Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBS Lett 584:1748–1759

    Article  PubMed  CAS  Google Scholar 

  • Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63:801–808

    Article  PubMed  CAS  Google Scholar 

  • Prince M, Patel V, Saxena S, Maj M, Maselko J, Phillips MR, Rahman A (2007) No health without mental health. Lancet 370:859–877

    Article  PubMed  Google Scholar 

  • Qin J, Berdyshev E, Poirier C, Schwartz NB, Dawson G (2012) Neutral sphingomyelinase 2 deficiency increases hyaluronan synthesis by up-regulation of hyaluronan synthase 2 through decreased ceramide production and activation of Akt. J Biol Chem 287(17):13620–13632

    Article  PubMed  CAS  Google Scholar 

  • Rao BG, Spence MW (1976) Sphingomyelinase activity at pH 7.4 in human brain and a comparison to activity at pH 5.0. J Lipid Res 17:506–515

    PubMed  CAS  Google Scholar 

  • Reichel M, Greiner E, Richter-Schmidinger T, Yedibela Ö, Tripal P, Jacobi A, Bleich S, Gulbins E, Kornhuber J (2010) Increased acid sphingomyelinase activity in peripheral blood cells of acutely intoxicated patients with alcohol dependence. Alcohol Clin Exp Res 34:46–50

    Article  PubMed  CAS  Google Scholar 

  • Reichel M, Beck J, Mühle C, Rotter A, Bleich S, Gulbins E, Kornhuber J (2011) Activity of secretory sphingomyelinase is increased in plasma of alcohol-dependent patients. Alcohol Clin Exp Res 35:1852–1859

    Article  PubMed  CAS  Google Scholar 

  • Reitz RC (1979) The effects of ethanol ingestion on lipid metabolism. Prog Lipid Res 18:87–115

    Article  PubMed  CAS  Google Scholar 

  • Riddle EL, Rau KS, Topham MK, Hanson GR, Fleckenstein AE (2003) Ceramide-induced alterations in dopamine transporter function. Eur J Pharmacol 458:31–36

    Article  PubMed  CAS  Google Scholar 

  • Rogasevskaia T, Coorssen JR (2006) Sphingomyelin-enriched microdomains define the efficiency of native Ca2+-triggered membrane fusion. J Cell Sci 119:2688–2694

    Article  PubMed  CAS  Google Scholar 

  • Rohrbough J, Rushton E, Palanker L, Woodruff E, Matthies HJ, Acharya U, Acharya JK, Broadie K (2004) Ceramidase regulates synaptic vesicle exocytosis and trafficking. J Neurosci 24:7789–7803

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Saito M, Cooper TB, Vadasz C (2005) Ethanol-induced changes in the content of triglycerides, ceramides, and glucosylceramides in cultured neurons. Alcohol Clin Exp Res 29:1374–1383

    Article  PubMed  CAS  Google Scholar 

  • Sánchez C, Rueda D, Ségui B, Galve-Roperh I, Levade T, Guzmán M (2001) The CB1 cannabinoid receptor of astrocytes is coupled to sphingomyelin hydrolysis through the adaptor protein fan. Mol Pharmacol 59:955–959

    PubMed  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Hannun YA (1999) Ceramide and sphingomyelinases in the regulation of stress responses. Chem Phys Lipids 102:141–147

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Toellner D, Wang K, Craddock R, Webb PR, McGettrick HM, Assi LK, Parkes N, Clough LE, Gulbins E, Salmon M, Lord JM (2004) Reactive oxygen species limit neutrophil life span by activating death receptor signaling. Blood 104:2557–2564

    Article  PubMed  CAS  Google Scholar 

  • Schissel SL, Keesler GA, Schuchman EH, Williams KJ, Tabas I (1998) The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J Biol Chem 273:18250–18259

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Wilczek K, Blennow K, Maras A, Jatzko A, Petroianu G, Braus DF, Gattaz WF (2004) Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol Psychiatry 56:41–45

    Article  PubMed  CAS  Google Scholar 

  • Schwarz E, Prabakaran S, Whitfield P, Major H, Leweke FM, Koethe D, McKenna P, Bahn S (2008) High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J Proteome Res 7:4266–4277

    Article  PubMed  CAS  Google Scholar 

  • Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol 190:47–53

    Article  Google Scholar 

  • Smesny S, Schmelzer CE, Hinder A, Kohler A, Schneider C, Rudzok M, Schmidt U, Milleit B, Milleit C, Nenadic I, Sauer H, Neubert RH, Fluhr JW (2012) Skin ceramide alterations In first-episode schizophrenia indicate abnormal sphingolipid metabolism. Schizophr Bull doi:10.1093/schbul/sbs058

    Google Scholar 

  • Spence MW, Burgess JK (1978) Acid and neutral sphingomyelinases of rat brain. Activity in developing brain and regional distribution in adult brain. J Neurochem 30:917–919

    Article  PubMed  CAS  Google Scholar 

  • Spence MW, Burgess JK, Sperker ER (1979) Neutral and acid sphingomyelinases: somatotopographical distribution in human brain and distribution in rat organs. A possible relationship with the dopamine system. Brain Res 168:543–551

    Article  PubMed  CAS  Google Scholar 

  • Spence MW, Beed S, Cook HW (1986) Acid and alkaline ceramidases of rat tissues. Biochem Cell Biol 64:400–404

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Cuvillier O, Edsall LC, Kohama T, Menzeleev R, Olah Z, Olivera A, Pirianov G, Thomas DM, Tu Z, Van Brocklyn JR, Wang F (1998) Sphingosine-1-phosphate in cell growth and cell death. Ann NY Acad Sci 845:11–18

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Willians M, Dulaney JT, Moser HW (1975) Ceramidase and ceramide synthesis in human kidney and cerebellum. Description of a new alkaline ceramidase. Biochim Biophys Acta 398:125–131

    Article  PubMed  CAS  Google Scholar 

  • Sulem P, Gudbjartsson DF, Geller F, Prokopenko I, Feenstra B, Aben KK, Franke B, den Heijer M, Kovacs P, Stumvoll M, Mägi R, Yanek LR, Becker LC, Boyd HA, Stacey SN, Walters GB, Jonasdottir A, Thorleifsson G, Holm H, Gudjonsson SA, Rafnar T, Björnsdottir G, Becker DM, Melbye M, Kong A, Tönjes A, Thorgeirsson T, Thorsteinsdottir U, Kiemeney LA, Stefansson K (2011) Sequence variants at CYP1A1-CYP1A2 and AHR associate with coffee consumption. Hum Mol Genet 20:2071–2077

    Article  PubMed  CAS  Google Scholar 

  • Tabatadze N, Savonenko A, Song H, Bandaru VVR, Chu M, Haughey NJ (2010) Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res 88:2940–2951

    PubMed  CAS  Google Scholar 

  • Tandon K, McGuffin P (2002) The genetic basis for psychiatric illness in man. Eur J Neurosci 16:403–407

    Article  PubMed  Google Scholar 

  • Terracciano A, Sanna S, Uda M, Deiana B, Usala G, Busonero F, Maschio A, Scally M, Patriciu N, Chen WM, Distel MA, Slagboom EP, Boomsma DI, Villafuerte S, Sliwerska E, Burmeister M, Amin N, Janssens AC, van Duijn CM, Schlessinger D, Abecasis GR, Costa PT Jr (2010) Genome-wide association scan for five major dimensions of personality. Mol Psychiatry 15:647–656

    Article  PubMed  CAS  Google Scholar 

  • Thayyullathil F, Chathoth S, Hago A, Patel M, Szulc ZM, Hannun Y, Galadari S (2011) Purification and characterization of a second type of neutral ceramidase from rat brain: a second more hydrophobic form of rat brain ceramidase. Biochim Biophys Acta 1811:242–252

    Article  PubMed  CAS  Google Scholar 

  • Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling? Proc Natl Acad Sci USA 95:3638–3643

    Article  PubMed  CAS  Google Scholar 

  • Toro C, Deakin JF (2005) NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res 80:323–30

    Google Scholar 

  • Wallis CJ, Rezazadeh SM, Lal H (1995) GM1 ganglioside reduces ethanol intoxication and the development of ethanol dependence. Alcohol 12:573–580

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455

    Article  PubMed  CAS  Google Scholar 

  • Weinreb NJ, Brady RO, Tappel AL (1968) The lysosomal localization of sphingolipid hydrolases. Biochim Biophys Acta 159:141–146

    Article  PubMed  CAS  Google Scholar 

  • Werle E, Fischer HP, Müller A, Fiehn W, Eich W (2001) Antibodies against serotonin have no diagnostic relevance in patients with fibromyalgia syndrome. J Rheumatol 28:595–600

    PubMed  CAS  Google Scholar 

  • Wheeler D, Knapp E, Bandaru VVR, Wang Y, Knorr D, Poirier C, Mattson MP, Geiger JD, Haughey NJ (2009) Tumor necrosis factor-α-induced neutral sphingomyelinase-2 modulates synaptic plasticity by controlling the membrane insertion of NMDA receptors. J Neurochem 109:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Wolf G, Gabay E, Tal M, Yirmiya R, Shavit Y (2006) Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain 120:315–324

    Article  PubMed  CAS  Google Scholar 

  • Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA (1994) Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem 269:19605–19609

    PubMed  CAS  Google Scholar 

  • Wong ML, Xie B, Beatini N, Phu P, Marathe S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J, Tabas I (2000) Acute systemic inflammation up-regulates secretory sphingomyelinase in vivo: a possible link between inflammatory cytokines and atherogenesis. Proc Natl Acad Sci USA 97:8681–8686

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Cederbaum AI (2009) Oxidative stress and alcoholic liver disease. Semin Liver Dis 29:141–154

    Article  PubMed  CAS  Google Scholar 

  • Yang SN (2000) Ceramide-induced sustained depression of synaptic currents mediated by ionotropic glutamate receptors in the hippocampus: an essential role of postsynaptic protein phosphatases. Neuroscience 96:253–258

    Article  PubMed  CAS  Google Scholar 

  • Yao JK, Leonard S, Reddy RD (2000) Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr Res 42:7–17

    Article  PubMed  CAS  Google Scholar 

  • Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I, Maxfield FR (1998) Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 140:39–47

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Carpinteiro A, Gulbins E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181:4247–4254

    PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Becker KA, Gulbins E (2009) Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta 1788:178–183

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li D, Su Y, Jiang S, Xu Y, Jiang K, Cui D (2012) Identification of the N-acylsphingosine amidohydrolase 1 gene (ASAH1) for susceptibility to schizophrenia in a Han Chinese population. World J Biol Psychiatry 13:106–113

    Google Scholar 

  • Zhao Z, Yu M, Crabb D, Xu Y, Liangpunsakul S (2011) Ethanol-induced alterations in fatty acid-related lipids in serum and tissues in mice. Alcohol Clin Exp Res 35:229–234

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kornhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Mühle, C., Reichel, M., Gulbins, E., Kornhuber, J. (2013). Sphingolipids in Psychiatric Disorders and Pain Syndromes. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_22

Download citation

Publish with us

Policies and ethics