Skip to main content

Part of the book series: Forschungsberichte des Landes Nordrhein-Westfalen ((FOLANW,volume 1258))

  • 24 Accesses

Zusammenfassung

Die Ortung eines Raumfahrzeuges, d. h. die Bestimmung seines Orts- und Geschwindigkeitsvektors in einem vorgegebenen Bezugssystem, ist ein Meßvorgang. Er erfordert:

  1. 1.

    Eine A-priori-Information über das gewählte Bezugssystem.

  2. 2.

    Kontinuierlich oder zu bestimmten kurzen Zeiten einen Fluß von Meßdaten aus dem Ortungsmeßgeber.

  3. 3.

    Kenntnis des Zusammenhanges zwischen den Meßdaten und den gesuchten Ortungsdaten.

  4. 4.

    Ermittlung der Ortungsdaten aus den Meßdaten (Auswertung).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arutynov, S. S., Errors of a Single-Degree-of-Freedom Integrating Gyro Due to Angular Oscillations of its Base, J. ARS, 30 (7), 1960.

    Google Scholar 

  2. Baker, D. C., Radioactive Testing of Accelerometer Takers Two Large Facilities, Space/Aeronautics, 36 (2), 1961.

    Google Scholar 

  3. Bender, M., und F. P. Hercules, An Experimental Method for Obtaining the Transfer Function of a Rate Gyro, IRE Trans., I — 6, No. 1, 1957.

    Google Scholar 

  4. Bodner, V. A., und V. P. Seleznev, On the Theory of Non-Disturbed Systems with Three Autocompensation Channels in Respect of Gravitation, IZV. Akad. Nauk. OTN, Energ. i. Autom., (1), 1960 (russisch).

    Google Scholar 

  5. Bodner, V. A., und V. P. Selezner, Theory of Stabilized Systems with Three SelfComplusation Channels of Acceleration Due to Gravity, J. ARS, 30 (11), 1960.

    Google Scholar 

  6. Brown, R. G., Outside — In Gimbaling Used in Thor, m/r, Mai 1958.

    Google Scholar 

  7. Cannon, R. H. jr., Aligument of Inertial Guidance Systems by Gyrocompassing — Linear Theory, J. Aerospace Sci., 28 (11), 1961.

    Google Scholar 

  8. Carrington, W. A., Rigid Drift Test Give Useful Gyro Data, m/r, 14. 11. 1960.

    Google Scholar 

  9. Cashmore, D. J., The Role of Inertial Equipment, J. BIS, 18 (4), 1961.

    Google Scholar 

  10. Cashmore, D. J., und C. N. Gordon, Instruments for Inertial Navigation, British Communications Electronics, Vol. 10, Nr. 8/9 (I) und 10 (II), 1959.

    Google Scholar 

  11. Cochin, Ira, Compliance of Nonuniform Gimbals, Aerospace Eng., 20 (4), 1961.

    Google Scholar 

  12. Coughlin, W. J., Summers Pruduces an Expendable Gyro, m/r, 29. 2. 1960.

    Google Scholar 

  13. Duncan, D. B., Analysis of an Inertial Guidance System, Jet Propulsion, 28 (2), 1958.

    Google Scholar 

  14. Draper, C. S., W. G. Denhard und M. B. Trageser, Development Criteria for Space Navigation Gyroscopes, Navigation, Vol. 8, No. 4, Winter 1961/62.

    Google Scholar 

  15. Drozdovich, V. N., Inertial Method of Velocity Measurement, J. ARS, 30 (7), 1960.

    Google Scholar 

  16. Erichsen, H. W., und D. J. Ettelmann, A Subminiature Self Recording Accelerometer for High-Shock-Duty, IRE — Trans. I — 6, No. 3, Sept. 1957.

    Google Scholar 

  17. Fischel, E. M., Gyro Damping — Its Part in Platform Design, Aerospace Eng., 20 (5), 1961.

    Google Scholar 

  18. Frahn, H. J., Über amerikanische Gyrokompasse, Elektronik, 6 (5), 1957.

    Google Scholar 

  19. Friederich, H., Elektrodynamische Beschleunigungsmesser, Archiv für Elektrotechnik, 41 (6), 1954.

    Google Scholar 

  20. Frye, W. E., Fundamentals of Inertial Guidance and Navigation, Proc. 4 Annual Meet. AAS, Preprint No. 57–9, 1958, sowie I. Astronaut. Sci., 5 (1), 1958.

    Google Scholar 

  21. Gorczycki, E., Dynamic Considerations Relating to the Behavior of Inertial Space-Stabilized Platforms, J. Aero. Sci., 24. Febr. 1957.

    Google Scholar 

  22. Grammel, R., Der Kreisel, Wien 1950, Springer, 2 Bde.

    Google Scholar 

  23. Guttwein, G. K., und A. I. Dranetz, Self Generating Accelerometers, Electronics, 24 (10), 1951.

    Google Scholar 

  24. Haake, H. B., und J. D. Welch, Schrift über elektrostatische Kreisel, IRE Space Electronics and Telemetry Symposium, Washington D. C., 1960.

    Google Scholar 

  25. Harding, J. T., und R. H. Tuffias, Cryogenie Gyros Levitoted by Magnetic Induction, Space/Aeronautics, 36 (3), 1961.

    Google Scholar 

  26. Harter, G. A., Spacecraft Set New Requirements for Inertial Guidance, Space/ Aeronautics, 35 (1), 1961.

    Google Scholar 

  27. Hayum, R., Compensation of a Digital Integrating Accelerometer, Instrumentation Lab., MIT, Juni 1959, ASTIA AD — 242 593.

    Google Scholar 

  28. Holahan, J., Martin — Orlando Solves Guidance Problem and Unplugs Information Bottlenoch, Space/Aeronautics, 36 (1), 1961.

    Google Scholar 

  29. Holahan, J., Inertial System off the Production Line Guides Atlas, Space/Aeronautics, 34 (2), 1960.

    Google Scholar 

  30. Holmes, J., NASA Ready to Pieh Saturn System, m/r, 27. 2. 1961.

    Google Scholar 

  31. Holzapfel, J., Plain and Fancy Tooling Builds Jupiter Gyros, American Machinist, 102 (27), 1958.

    Google Scholar 

  32. Jacobi, W. J., Themen aus dem Gebiet der Trägheitsnavigation Littau Systems Inc., Publication No. 1462, 1961.

    Google Scholar 

  33. Jagy, J. P., The Air Bearing Stabilization Problem, m/r, 3 (2), 1958.

    Google Scholar 

  34. Johnson, G. W., und R. B. Mac Donald, Inertial Guidance for Hypersonie and Orbital Vehicles, Inst. Aero. Sci. Rep., 59–33, Jan. 1959.

    Google Scholar 

  35. Judge, J. F., X-15 Flight Data System — A Precursor, m/r, 27. 2. 1961.

    Google Scholar 

  36. Klass, P. J., Lightweight Inertial Unit Cuts Complexity, Aviation Week, 75 (15), 1961.

    Google Scholar 

  37. Klass, P. J., Two Axis Gyroscope Uses Spinning Liquid, Aviation Week, 75 (14), 1961.

    Google Scholar 

  38. Koelle, H. H. (ed.), Handbook of Astronautical Engeneering, McGraw-Hill Book Comp., Inc., New York 1961.

    Google Scholar 

  39. Koelle, D. E., Steuerschema und Steuerorgane der A-4-Rakete (V-2), Raketentechnik und Raumfahrtforschung, 1 (2), 1957.

    Google Scholar 

  40. Kurdik, E. J., Flugkörpersteuerungen und Meßwertfernübertragungsanlagen auf dem Pariser Luftsalon 1961, Flugwelt, 8/1961.

    Google Scholar 

  41. Kovit, B., »Twist« Autocollimator Aims Rail-Borne Minuteman, Space/Aeronautics, 35 (4), 1961.

    Google Scholar 

  42. Kovit, B., Ceramic Gas — Bearing Gyro for Space Guidance, Space/Aeronautics, 34 (1), 1960.

    Google Scholar 

  43. Kovrt, B., Magnetohydrodynamic Gyro Monitors Two Axes at Once, Space/ Aeronautics, 35 (3), 1961.

    Google Scholar 

  44. Krementulo, V. V., Stability of a Gyroscape Having a Vertical Axis of the outer Ring with Dry Friction in the Gimbal Axes Taken into Account, J. Appl. Math. and Mechanics, 24 (3), 1960.

    Google Scholar 

  45. La Fond, C. D., FBM Accuracy Starts with SINS, m/r, 25. 7. 1960.

    Google Scholar 

  46. La Fond, C. D., Spaceship Platform Nears Flight Test, m/r, 9 (10), 1961.

    Google Scholar 

  47. La Fond, C. D., Honeywell ESG Slated for Duty in Polaris Subs, m/r, 13. 11. 1961.

    Google Scholar 

  48. La Fond, C. D., GE Gyros May Solve Space Problems, m/r, 17. 10. 1960.

    Google Scholar 

  49. La Fond, C. D., GE’s New Gyros Near Testing, m/r, 9 (4), 1961.

    Google Scholar 

  50. La Fond, C. D., Guidance Designed to Be Fail-Proof, m/r, 5. 9. 1960.

    Google Scholar 

  51. Lange, A., Gyro Time Constants, J. ARS, 30 (10), 1960.

    Google Scholar 

  52. Laub, J. H., und H. D. Mcginness, A Closed Cycle System for Gas Bearings, Astronautics, 6 (3), 1961.

    Google Scholar 

  53. Laub, J. H., und H. D. Mcginness, Gas-Floated Spinning Spheres, Aerospace Eng., 20 (12), 1961.

    Google Scholar 

  54. Lichtenstein, B., Technical Information for the Engineer-Gyros, Kearfott Div., General Precision, Inc., Little Falls, N. J., Juli 1960, 3. Ausgabe.

    Google Scholar 

  55. Licxrenstein, B., Gyros of all Types Face Change in Design, m/r, 27. 2. 1961.

    Google Scholar 

  56. Litwin-Sedgy, M. Z., Dynamics of a Gyroscape with Two Degrees of Freedom, J. ARS, 30 (7), 1960.

    Google Scholar 

  57. Markhashov, L. M., Stability of Motion of a Gyroscape with a Cardan Suspension, J. ARS, 31 (7), 1961.

    Google Scholar 

  58. Markin, D. R., Gyroscopic Systems, Moskau 1956, Gostekbizdat.

    Google Scholar 

  59. Mcclure, C. L., Theory of Inertial Guidance, New York 1961, Printice Hall.

    Google Scholar 

  60. Mueller, F. K., Ober automatische Steuerungssysteme für ballistische Raketen, Raketentechnik und Raumfahrtforschung, 4 (4), 1960.

    Google Scholar 

  61. Mueller, F. K., Considerations on Inertial Guidance for Missiles, Navigation, 6 (4), 1951.

    Google Scholar 

  62. Mueller, F. K., The How and Why of a Inertial Guidance, m/r, 9. 2. 1959.

    Google Scholar 

  63. Mundo, C., Inertial Aids for Space Travel, Proc. 4. Annual Meet. AAS, Preprint No. 57 — 12, 1958.

    Google Scholar 

  64. Newman, P. J., Inertial Navigation and Space Flight, Proc. 4. Annual Meet. AAS, Preprint No. 57 — 13, 1958.

    Google Scholar 

  65. Nolan, R. L., Titan Guidance Program is Accelerated, m/r, Mai 1958.

    Google Scholar 

  66. O’donnell, C. F., Inertial Navigation, J. Franklin Inst., 266 (4), 1958, und 266 (5), 1958.

    Google Scholar 

  67. Orlacchio, A. W., und B. Hieber, Trends in Acceleration Measurement, IRE Trans., I — 6, No. 2, Juni 1957.

    Google Scholar 

  68. Osten, R. Von, Alinement for Minuteman-On-Rails, m/r, 6. 2. 1961.

    Google Scholar 

  69. Parker, N. F., und C. P. Greening, Inertial Navigation, AGARDograph (21), 67–86, Sept. 1956.

    Google Scholar 

  70. Parsons, G. C., und J.A. O’shea sen., Air Bearings Enhance Gyro Testing, m/r, 16. 10. 1961.

    Google Scholar 

  71. Pateman, J. E., Inertial Navigation, J. Roy. Aeronaut. Soc., Febr. 1959.

    Google Scholar 

  72. Pitman, G. R. (ed.), Inertial Guidance, New York 1962, John Wiley and Sons, Inc.

    Google Scholar 

  73. Poindexter, R. W., Theory and Design of Vibrating Wire Transducers, Byron Jackson Comp., Los Angeles, Kalif.

    Google Scholar 

  74. Polhemus, W. L., Navigating the Supersonic B-58, J. Inst. of Navigation, 7 (2 + 3), 1960.

    Google Scholar 

  75. Richardson, K. I. T., The Gyroscape Applied, London 1955, Hutchinson’s Scientific and Technical Publications.

    Google Scholar 

  76. Russel, W. T, Inertial Guidance for Rocket-Propelled Missiles, Jet Propulsion 28 (1), 1958.

    Google Scholar 

  77. Savant, C. J., Principles of Inertial Navigation, New York 1961, McGraw-Hill Book Comp., Inc.

    Google Scholar 

  78. Savet, P. H., Gyroscapes: Theory and Design, with Applications to Instrumentation, Guidance and Control, New York 1961, McGraw-Hill Book Comp., Inc.

    Google Scholar 

  79. Schneider, A. M., Vektor Principles of Inertial Navigation, IRE Trans., ANE —6, No. 3, Sept. 1959.

    Google Scholar 

  80. Schoemann, R. H., und E. S. Rocks, Beryllium: Best Bet for Gyro Structures, Space/Aeronautics, 35 (3), 1961.

    Google Scholar 

  81. Seifert, H. S., und K. Brown, Ballistic Missiles and Space Vehicle Systems, London 1961, John Wiley and Sons Ltd.

    Google Scholar 

  82. Seifert, H. S. (ed.), Space Technology, New York 1959, John Wiley and Sons, Inc.

    Google Scholar 

  83. Shatunoff, S., Arma Cuts Weight, Adds Reliability, m/r, 27. 2. 1961.

    Google Scholar 

  84. Shea, J., Titan II All-Inertial System to Be Tested Soon, m/r, 27. 2. 1961.

    Google Scholar 

  85. Slater, J. M., und D. B. Duncant, Inertial Navigation, Aero Eng. Rev., 15 (1), 1956.

    Google Scholar 

  86. Slater, J. M., Which Accelerometer for Spacecraft Guidance? Space/Aeronautics, 34 (3), 1960.

    Google Scholar 

  87. Slater, J. M., New Frontiers in Gyrocompasses, Navigation, 8 (3), Herbst 1961.

    Google Scholar 

  88. Slater, J. M., Newtonian Navigation, Autonetics Div., North American Aviation, Inc., 1961.

    Google Scholar 

  89. Starrrz, R. F., Einführung in die Elektronik ferngelenkter und selbstlenkender Flugkörper, Flugkörper, Heft 6, 1961.

    Google Scholar 

  90. Stearns, E. V., An Interplanetary Navigation System, Proc. IX. Int. Astronaut. Congr., Wien 1959, Springer.

    Google Scholar 

  91. Stevens, F., Space Navigation Poses Requirements, m/r, 9. 2. 1959.

    Google Scholar 

  92. Stevens, F., und F. W. Lynch, Aids to Inertial Navigation, Aeron. Eng. Rev., Nov. 1956.

    Google Scholar 

  93. Stevens, F., Aiding the Inertial Navigation System, Navigation, 6 (3), Herbst 1958.

    Google Scholar 

  94. Stewart, R. M., Some Effects of Vibration and Rotation on the Drift of Gyroscapic Instruments, J. ARS, 29 (1), 1959.

    Google Scholar 

  95. Strang, C. B., You Don’t Need Gyros to Get Directional Reference Data, Space/ Aeronautics, 35 (4), 1961.

    Google Scholar 

  96. Stuhlinger, E. (ed.), From Peenemünde to Outer Space, Huntsville ( Ala. ) 1962, George E. Marshall Space Flight Center, NASA.

    Google Scholar 

  97. Walter, R. B., The Brain of the Polaris Missile, m/r, 12. 6. 1961.

    Google Scholar 

  98. Winterfelt, R., Minuteman System is »Most Reliable«, m/r, 27. 2. 1961.

    Google Scholar 

  99. Wrigley, W., Schuler Teming Characteristics in Navigational Instruments, J. Inst. of Navigation, 2 (8), 1948.

    Google Scholar 

  100. Voutsas, A. M., und W. T. Chow, Präzision und Zuverlässigkeit von Inertialsystemen, Interavia, 14 (7), 1959.

    Google Scholar 

  101. Yingsr, P., und C. L. Seacord, Dyna-Soar to Depend on Proven Parts, m/r, 27. 2. 1961.

    Google Scholar 

  102. Abate, J. E., Study Report on Astro Digital Doppler Speedometer, Kearfott Comp. Inc., Clifton, New Jersey, USA (Firmenschrift).

    Google Scholar 

  103. Anderson, R. A., und C. S. L. Keay, New Zealand Visual Observations at the Rocket Accompanying the Russian Satellite, Astronautica Acta, 3 (4), 1957.

    Google Scholar 

  104. Berger, W. J., und J. R. Ricupito, Visibility of Obtical Points, Jet Propulsion, 28 (12), 1958.

    Google Scholar 

  105. Bernotat, R., Zum Problem der Lageregelung von Satelliten, insbesondere der Ausrichtung auf die Erdvertikale, Luftfahrttechnik, 8 (1962), Nr. 5, S. 126–128.

    Google Scholar 

  106. Bibermann, L. M., Photographic Tracking of Guided Missiles, Electronics, Vol. 21, Juli 1948.

    Google Scholar 

  107. Bode, H., Neuzeitliche Kinetheodoliten für die Flugbahnbestimmung von Verkehrsflugzeugen, Wetterraketen und Satelliten, Bd. 7, Flugnavigation und Flugsicherung, Verkehrs-und Wirtschaftsverlag GmbH, Dortmund 1959.

    Google Scholar 

  108. Boni, A., Observation of a Satellite Near its Culmination, Astronautica Acta, Vol. IV, Fasc. 3, 1958.

    Google Scholar 

  109. Bonser, T. H., Askania Phototheodolite System, Techn. Data Digest, März 1949

    Google Scholar 

  110. Buskirx, L. F. Von, A System of Film Frame, Identification for Cinctheodolites (Ascania Type), Naval Ordnance Test Station, China Lake, Calif., 20. August 1957, 20 p., ASTIA AD — 150 781.

    Google Scholar 

  111. Collins, A., Kerr Cell Camera Has Recorded Speed, m/r, 23. 4. 1962.

    Google Scholar 

  112. Cordozo, A. L., Automation for Interplanetary Navigation, Proc. IX. Int. Astronaut. Congr., Vol. II, Wien 1959, Springer.

    Google Scholar 

  113. Cremona, C. E., Rilevamento e rivalemento delle caretteristiche di volo dei razzi e missili, Proc. V. Internat. Astronaut. Congr., Wien 1955, Springer.

    Google Scholar 

  114. Esciier, P. H., und G. P. Mici-Ielson, All Sky Surveillance System For Satellite Detection, Electro-Optical Systems, Inc., Pasadena, Calif., ASTIA AD 246 037, Juli 1960.

    Google Scholar 

  115. Garvey, R. J., A Cine-Theodolite Control System used on Guided Missile Ranges, Electron. Eng., März 1958.

    Google Scholar 

  116. Henize, K. G., The Baker-Nunn Satellite Traching Camera, Sky and Telescope, Jan. 1957.

    Google Scholar 

  117. Humason, M. L., The Apparent Radial Velocities of 100 Extra-Gallactic Nebulal, The Astrophysical Journal 83 (1936), 1.

    Article  Google Scholar 

  118. Jaschex, W. J., Die photographische Beobachtung künstlicher Satellitoide, Proc. IX. Int. Astronaut. Congr., Vol. I, Wien 1959, Springer.

    Google Scholar 

  119. King-Hele, D. G., und R. H. Merson, Satellite Orbits in Theory and Practice, J. BIS, 16 (8), 1958.

    Google Scholar 

  120. Klee, E., Drei Jahre Satelliten — Beobachtung an der Volkssternwarte München, Weltraumfahrt, 4, 1960.

    Google Scholar 

  121. Klee, E., Photographische GroßbasisrHessung von Satellitenbahnen, Weltraumfahrt, Heft 6, 1961.

    Google Scholar 

  122. Klemperer, W. B., A Heliographic Altitude Recorder For Missiles Navigation, 2 (3), Sept. 1949.

    Google Scholar 

  123. Kordik, E. J., Flugkörpersteuerungen und Meßwertübertragungsanlagen auf dem Pariser Luftsalon 1961, Flugwelt 8, 1961, 17 Fig.

    Google Scholar 

  124. Kovir, B., Track-While-Scan, IR-System for Automatic, Threat Eraluation, Space/Astronautics, 36 (2), 1961.

    Google Scholar 

  125. La Fond, C. D., AMR Buys Biggest Ballistic Camera, m/r, 11. 9. 1961.

    Google Scholar 

  126. La Fond, C. D., Photomitric System Boots Tracking Accuracy, m/r, 3. 10. 1960.

    Google Scholar 

  127. La Fond, C. D., Tracker’s Range Reaches to the Stars, m/r, 5. 12. 1960.

    Google Scholar 

  128. La Fond, C. D., IR Transducer Brings New Advantages, m/r, 20. 3. 1961.

    Google Scholar 

  129. La Fond, C. D., IR-Speetrometer Has Striking Sensitivity, m/r, 22. 5. 1961.

    Google Scholar 

  130. Locke, A. S., Guidance, Princeton, N. J., 1955, D. van Norstrand Company, Inc.

    Google Scholar 

  131. Masericii, A. C., Visual Observations of the Earth’s Satellite in the USSR, Proc. VIII. Internat. Astronaut. Congr., Wien 1958, Springer.

    Google Scholar 

  132. Miller, B., Services to Push Optical Maser Effort Av. Week, 15. 1. 1962.

    Google Scholar 

  133. Mrus, G., Refining Azimuth Heading Accuracy, m/r, 18. 9. 1961.

    Google Scholar 

  134. Ogoridhuikov, K. F. (Interplanetary Commitee of the Soviet Academie of Sciences), Preliminary Summary of Optical Observations of Artifical Earth Satellites, Proc. IX. Int. Astronaut. Congr., Vol. I, Wien 1959, Springer.

    Google Scholar 

  135. Ränike, G., Die Bestimmung der Geschwindigkeit von Weltraum-Fahrzeugen mit Hilfe der Dopplerverschiebung, Bericht 61/11 des Instit. f. Luftfahrzeugführung und Luftverkehr der Techn. Univ. Berlin (Reihe: Beiträge zur Astronautik).

    Google Scholar 

  136. Rosxovsxi, D. A., Experiences in the Photographic Observation of Artifical Earth Satellites With the Maxutov Meniscus Telescopes, Astron. Zournal, 35, 1958, Moskau.

    Google Scholar 

  137. Schmidt, Ingeborg, Spaces of Potential Visibility of Artifical Satellites for the Unaided Eye, Proc. VIII. Int. Astronaut. Congr., Wien 1958, Springer.

    Google Scholar 

  138. Schweisinger, G., Optical Altitude Recorder For the Aerobee Rocket, Photographic Engineering, Vol. 2, No. 4, 1952, p. 169–177.

    Google Scholar 

  139. Slovsky und Eglov, Optische Beobachtungen künstlicher Erdsatelliten, Usp. fiz. pauk, Moskau, 64 (3), 1958.

    Google Scholar 

  140. Struve, O., Astronomie, Berlin 1962, Walther de Gruyter u. Co.

    Google Scholar 

  141. Touseg, R., The Visibility of an Earth Satellite, VI. Intern. Astronaut. Congr., 1955.

    Google Scholar 

  142. Whipple, F. L., und J. H. Hynak, Optical and Visual Tracking of Artifical Satellites, Proc. VIII. Int. Astronaut. Congr., Wien 1958, Springer.

    Google Scholar 

  143. Whipple, F. L., und J. H. Hynak, Research Programm Based on the Optical Tracking of the Artifical Earth Satellites, Proc. Inst. of Radio Eng., 44 /760, 1956.

    Google Scholar 

  144. Woodbridge, D. D., und N. A. Warren, Measurement of Jupiter Reentry Radiation, Proc. X. Int. Astronaut. Congr., Vol. I, Wien 1960, Springer.

    Google Scholar 

  145. Neue Beobachtungskamera für Flugkörper, Weltraumfahrt, 6/61.

    Google Scholar 

  146. Trap Keeps Light off CRT-Surface, m/r, 19. 6. 1961.

    Google Scholar 

  147. Land—Air’s White Sands-Tracking, m/r, 16. 1. 1961.

    Google Scholar 

  148. High Precision Stellar Navigator For Interplanetary Guidance (C. D. Bock), Arma Engng., 2 (6), 12 — 15. Sept./Oct. 1959.

    Google Scholar 

  149. Fiber Optics Improves, Scan Systems, m/r, 22. 8. 1960.

    Google Scholar 

  150. Optics Will guide Spacecraft, m/r, 22. 8. 1960.

    Google Scholar 

  151. Optical Aligument Field Sees Steadily Growing Rivalry, m/r, 22. 8. 1960.

    Google Scholar 

  152. An Optical Sensor for Super-Gyros, m/r, 31. 7. 1961.

    Google Scholar 

  153. System Exploits Converging Lights, m/r, 9. 4. 1962.

    Google Scholar 

  154. Adams, R. M. et al, Processed Observational Data for Satellites 1957 alpha and 1957 beta, Smithsonian Contrib. Astrophys., 2, 1958, p. 287.

    Google Scholar 

  155. Beckmann, B., Erste Ergebnisse der Satellitenbeobachtung für die Kenntnis der Wellenausbreitung, Bd. 7: Flugnavigation und Flugsicherung, Verkehrs-und Wirtschaftsverlag Dortmund, 1959, p. 149.

    Google Scholar 

  156. Blythe, J. H., The Scientific Uses of Earth Satellites, The Marconi Review, Vol. XXIV., No. 141, 2nd Quarter 1961, p. 84

    Google Scholar 

  157. Bock, C. D. et al, Guidance Techniques for Interplanetary Travel, ARS Journal, 29 (12), Dec. 1959, p. 931.

    Article  Google Scholar 

  158. Braun, W. v., The Explorers, 9 IAK, Bd. II, 1958, p. 914.

    Google Scholar 

  159. Brown, R. R. et al, Radio Observation of Russian Earth Satellites, Proc. IRE, Vol. 45, Nov. 57, p. 1552.

    Google Scholar 

  160. Bruns, R. et al, Application of the Doppler Principle to Rocketry, in: »From Peenemuende to Outer Space«, hrsg. E. Stuhlinger, George C. Marshall Space Flight Center.

    Google Scholar 

  161. Burt, E. G. C., Satellite Tracking: its methods and purpose, Endeavour 17. Oct. 1958, p. 216.

    Article  Google Scholar 

  162. Cade, C. M., Radio Astronomy and Navigation, Journal of the Royal Aeronautical Soc., Nov. 1958 (ca. 300 Literaturhinweise).

    Google Scholar 

  163. Cashmore, D. J., Manned Navigation and Guidance in Solar System, Journal of the BIS, 17 (2), March/April 1959, p. 46.

    Google Scholar 

  164. Castruccio, P. A., Communications and Navigation techniques of interplanetary travel, IRE Trans. ANE — 4 (4), Dez. 1957, p. 216.

    Google Scholar 

  165. Castruccio, P. A., Interplanetary Communication and Navigation, Aeroplane, 97, Nov. 1959, p. 446 (UK).

    Google Scholar 

  166. Corrington, A. E., An Interferometer for Radio astronomy with a single-lobed radiation pattern, IRE Trans., 5 (3), 1957, p. 247.

    Google Scholar 

  167. De Bey, L. G., Doploc tracking determines orbits of satellites, Electron. Industr., 19 (10), Oct. 1960, p. 78.

    Google Scholar 

  168. Dickstein, H. D., Tripple-threat Agare: telemetry receiver, aquisition aid, direction sensor, Space/Aeronautics, 35/2, Feb. 61, p. 126.

    Google Scholar 

  169. Dombrowski, E. et al, Physik und Technik mikrominiaturisierter Geräte, Flugkörper, 2, 1961, p. 41.

    Google Scholar 

  170. Doundoulakis, G. J., An Universal Radio Astronomy System for Radio Telescopes, Space Vehicle Tracking and Scatter Propagation Studies, Proc. 4 Annual Meet AAS Reprint, No. 57–23, 1958.

    Google Scholar 

  171. Easton, R. L., The Mark II Minitrack System, Journal BIS, 16 (1958), 7, p. 390.

    Google Scholar 

  172. Easton, R. L., Radio Tracking the Earth Satellite — An Opportunity for Amateur Collatobation, QST, 40, 1956, p. 38.

    Google Scholar 

  173. Easton, R. L., Radio Tracking the IGY-Satellites — The Mark II Minitrack System, J. Astronautics, 4, 1957, p. 31.

    Google Scholar 

  174. Escher, P. H., All Sky Surveillance System for Satellite Detection, A STIA TAB, No. N 61 — 1 — 1. — AD 246 037, July 1960.

    Google Scholar 

  175. Firor, J., A Radio Telescope, QST, 41, 1957, p. 32.

    Google Scholar 

  176. Fleischer, H., Geräte und Methoden zur Messung der Funkausstrahlungen künstlicher Erdsatelliten beim Fernmeldetechn. Zentralamt, RRF 2, Bd. 5, 1961, p. 56.

    Google Scholar 

  177. Freiesleben, Bericht über eine Dienstreise in die USA (24. 6.-8. 7. 1961 ), 6 Anlagen, Deutsches Hydrographisches Institut, Hamburg.

    Google Scholar 

  178. Freitag, R. F., Project Transit: A Navigation Satellite, J. Institute of Navigation, 7 (2 + 3), p. 106, 1960.

    Google Scholar 

  179. Getting, H., New Minitrack to Cover All Orbits, Missiles and Rockets (m/r), June 20, 1960, p. 28.

    Google Scholar 

  180. Glazier, E. v. D. et al., Satellites and Problems of Long Rage Detection and Tracking, Pergamon press, London 1960.

    Google Scholar 

  181. Golany, M. J., The Application of Radio Interferometer to the Guidance of Interplanetary rockets, Space-Flight Problems, p. 71, 1953.

    Google Scholar 

  182. Guier, W. H. et al, Theoretical Analysis of Doppler radio signals from Earth Satellites, Nature, 181, May 1958, p. 1525.

    Article  Google Scholar 

  183. Mcguire, F., US Agencies Silent on LuNIK Tracking, m/r, Feb. 2, 1959, p. 21.

    Google Scholar 

  184. Gunther, M., Tracking the Man Made Satellite, Radio and TV News, 1958, 1957, p. 31.

    Google Scholar 

  185. Gutton, H., Pilotage d’un astronet par des moyens radio électriques, Proceedings VIII I. A. F. Kongreß 1957, p. 165.

    Google Scholar 

  186. Hadady, Instrumentation and Range Safetysystems for Vandenberg AFB, IRE Transactions, Vol. — SET — E, March 1959, No. 1, p. 14.

    Google Scholar 

  187. Hagen, J. P., Radio Tracking Orbitand Communication for the Earth Satellite, Aeronaut. Eng. Rev., 16, No. 5, 1957, p. 62.

    Google Scholar 

  188. Handel, P. F. v. et al, Accuracy Limits in Electronic Tracking of Space Vehicles, Xth IAF Congress, London 1959, Proceedings I, p. 43.

    Google Scholar 

  189. Handel, P. F. v. et al, High Accuracy Electronic Tracking of Space Vehicles, IRE Transactions MIL — 3, No. 4, p. 162, Oct. 1959.

    Article  Google Scholar 

  190. Heinze, K. G., Tracking Artifical Satellites and Space Vehicles in Advances in Space Science, Bd. II, hrsg. von Frederik I Ordway, Academic Press, New York—London (1960).

    Google Scholar 

  191. Hefley, G. et al, Timing and Space Navigation With an Existing Ground Based System, A STIA TAB, No. N 61 — 1 — 2. — AD 246 270, Oct. 1960.

    Google Scholar 

  192. Heironimus, XSM-65 (IOC) Instrumentation and Range Safety System (IRS S) (7–11006 and 7–11007) Checkout Procedure, Convair Astronautics, Feb. 1959, ASTIA AD — 243 326.

    Google Scholar 

  193. Jensen, J. et al, Design Guide to Orbital Flight, McGraw-Hill Book Comp., New York 1962.

    Google Scholar 

  194. Kazantsev, A., Observations of Radio Signals from the Artificial Earth Satellites and their Scientific Significance, Radio (Moskau), No. 6, 1957, p. 17.

    Google Scholar 

  195. Klee, E., Funktechnische und optische Betrachtung von Satelliten, 10. Raketen-und Raumfahrttagung der DRG, September 1961, Bremen.

    Google Scholar 

  196. Knothe, A. H., On Wave Propagation in the Atmosphere and Satellite Observation, AFMDC TN — 59 — 9. — A STIA AD 215–466 (May 1959).

    Google Scholar 

  197. Knothe, A. H., Range Safety — A Necessary Evil, Aerospace Eng., 20 (6), p. 20, June 1961.

    Google Scholar 

  198. Kölle, D. E., Die ersten Funk-Relais-Satelliten Echo I und Courier IB, RRF, 4, (4), p. 143, 1960.

    Google Scholar 

  199. Kölle, H. H. (ed.), Handbook of Astronautical Eng., New York 1961, McGraw-Hill Book Comp.

    Google Scholar 

  200. Lange, F. H., Entwicklungstendenzen der modernen Ortungstechnik: Korrelations-Ortungsverfahren, Nachrichtentechnik, 11, Heft 1, p. z, 1961.

    Google Scholar 

  201. La Fond, C.D., Air Force Satellites to Measure Interference, Missiles and Rockets, No. 15, Vol. 9, Oct. 9, 1961, p. 24.

    Google Scholar 

  202. Lovell, A. C. B., Radio Astronomy and the Iodrell Bank Telescope, Radio and TV News, 59, p. 35, 1958.

    Google Scholar 

  203. Maguire, T., Air Force is Planning the New Better Space Track System, electronics, nar 24, 1961, p. 32 (McGraw-Hill).

    Google Scholar 

  204. Marner, G. R., Automatic Radio-Celestial Navigation, Journal of the Inst. of Navigation, Vol. XII, Nr. 3, 4, July/Oct. 1959, p. 249.

    Google Scholar 

  205. Medvedev, V. I., Method of Radio Interference Measurements of Small Time Intervals Using Frequency Multiplication, Journal A.R. S., Vol. 32, No. 3, March 1962, p. 458.

    Google Scholar 

  206. Mengel, I. T., Minitrack system design criteria, Electronic Engng. (New York), 76, August 1957, p. 667.

    Google Scholar 

  207. Mengel, I. T. et al, Tracking Satellites by Radio, Scientific American, 198, No. 1, 1958, p. 23.

    Article  Google Scholar 

  208. Merson, R. H., Methoden zur Analyse terrestrischer Radiobeobachtungen sowie opt. Beobachtungen von Erdsatelliten, Astronautica Acta, Vol. V, Fasc. 1 (1959)

    Google Scholar 

  209. Miller, V. L., The role of Electronic Trajectory Measurement Systems in Missile Tests, IRE Wescon. Cony. Rec., 1, 1957, p. 17.

    Google Scholar 

  210. Moody, A. B., Can Navigational Requirements be Met by Means of Satellites, Navigation, Vol. 7, No. 4, Winter 1960, p. 204.

    Google Scholar 

  211. Moscx, R., Geschwindigkeitsmessungen nach dem Dopplerprinzip und ihre Anwendung für Flugweitensteuerung und Bahnvermessung, in: Hochfrequenztechnik und Weltraumfahrt, hrsg. von R. Merten, S. Hirzel Verlag, Stuttgart 1951, p. 102.

    Google Scholar 

  212. Newton, R. R., Tracking Objects Within the Solar System Using Only Doppler Measurements, X IAF-Kongreß, Proceedings I (1959), p. 435.

    Google Scholar 

  213. Newton, R. R., Application of Doppler Measurements to Problems in Relativity, Space Probe Tracking, and Geodosy, Appl. Phys. Lab., John Hopkins Univ., June 1960. ASTIA — 243 485 (60 — 4 — 4).

    Google Scholar 

  214. Noron, A. R., Guidance of Space Vehicles by Radio Measurements and Command, Journal BIS, 18 (4), July—August 1961, p. 132.

    Google Scholar 

  215. Osten, R. v., Ranger — What Might Have Been? m/r, Feb. 5, 1962, p. 12.

    Google Scholar 

  216. Paetzold, H. K., Internationale Beobachtung von Erdsatelliten, Weltraumfahrt, 3, 1961, p. 81.

    Google Scholar 

  217. Paetzold, H. K., Einige Ergebnisse aus den Beobachtungen der ersten russ. Erdsatelliten, RRF 2, Bd. 2, 1958, p. 50.

    Google Scholar 

  218. Paetzold, H. K., Weitere Beobachtungen der russ. Erdsatelliten, RRF 2, Bd. 3 (59), p. 45.

    Google Scholar 

  219. Pawsey, I. W. et al, Radio Astronomy, Oxford 1955.

    Google Scholar 

  220. Planniac, I. W., Earth Satellite Tracking Methods, ASTIA TAB, No. N 61 —1 — 2. — AD 246 329, 1958.

    Google Scholar 

  221. Priesetr, W. et al, Radiobeobachtungen der ersten künstlichen Erdsatelliten, Westdeutscher Verlag, Köln und Opladen 1957.

    Google Scholar 

  222. Priester, W. et al, Bahnbestimmung von Erdsatelliten aus Doppler-EffektMessungen, Westdeutscher Verlag, Köln und Opladen 1958.

    Google Scholar 

  223. Richards, P. B., Preliminary Orbit Determination of a Nontransmitting Satellite Using the Doploc Tracking System, ARS-Journal 31 (1961), p. 1729.

    Google Scholar 

  224. Richter, H. L. et al, Microlock, A Minimum Weight Radio Instrumentation System for a Satellite, IPL., 28, 1958, 8, p. 532; auch in Vistas in Astronautics, 1958, p. 88.

    Google Scholar 

  225. Roberson, R. E., General Guidance and Control Concepts for Satellites and Space Vehicles, IX. IAK Proceedings, I, 1958, p. 25.

    Google Scholar 

  226. Rzlunga, O. et al, Observation of Signals from the Artificial Satellites, Radio (Moskau), No. 8, 1957, p. 17.

    Google Scholar 

  227. Scetten, C. J. et al, A New Satellite Tracking Antenna, IRE Convention Record, No. 224–261, 1957.

    Google Scholar 

  228. Schmitt, J. J., Some Considerations in the Design of the Guidance and Control System for Discoverer.

    Google Scholar 

  229. Schroeder, C. A. et al, Project Vanguard, Rep. No. 36, Minitrack, Rep. No. 8, Time standard, NRL, 5227, US Naval Research Lab.

    Google Scholar 

  230. Schwartz, L. S., Phase-Lock for Aerospace Communications Receivers, Space and Aeronautics, 37/2, Feb. 62, p. 71.

    Google Scholar 

  231. Seaman, L. T., Midcourse Guidance is Necessity for Interplanetary Travel, Missiles and Rockets, Feb. 9, 1959, p. 40.

    Google Scholar 

  232. Seifert, H. S., Space Technology, New York 1959, John Wiley and Sons, Inc., 1959.

    Google Scholar 

  233. Slee, O. B., Radio Scintillations of Satellite 1958 a, Nature, 181 (June 1958), p. 1611.

    Article  Google Scholar 

  234. Speer, F. H. et al, Ground Versus On-Board-Tracking for Space Navigation in From Peenemuende to Outer Space, hrsg. von E. Stuhlinger, George C. Marshall, Space Flight Center.

    Google Scholar 

  235. Staritz, R. F., Einführung in die Satellitenelektronik, Flugwelt, 1, 1962, p. 43.

    Google Scholar 

  236. Stodola, B. K., Radio Guidance, Journal ARS, 29 (12), p. 940.

    Google Scholar 

  237. Thompson, A. R., Radio Interference at the Harvard Radio Astronomy Station, ASTIA AD — 146 852, 1957 (58–5).

    Google Scholar 

  238. Uneinski, G. J., »XSM-65D, Azusa Type B Coherent Transponder System 7–54417 Modified) Checkont procedure«, Convair Astr., Jan. 1959. — A STIA AD 243 320 (60 — 4 — 4).

    Google Scholar 

  239. Vassy, E. A., Etude de l’émission radio électrique des satellites artificiels, Astronautica Acta, Vol. VIII, Fasc. 2/3.

    Google Scholar 

  240. Vitkevich, V. V. et al, Radio Astronautical of the Second Soviet Space Rocket, J. ARS, 30 (11), p. 1060, 1960.

    Google Scholar 

  241. Wan, C. C., Application of a Satellite System to Marine and Air Navigation, IRE, Transact. Reprint of Author’s papers submitted for 5 Nat. Sympos. (1960) on Space Electronics and Telemetry, 19. Sept. 1960.

    Google Scholar 

  242. Weiffenbach, G. C., Measurements of the Doppler Shift of Radio Transmissions from Satellites, Proceedings IRE, No. 4, 1960, p. 750.

    Article  Google Scholar 

  243. Woyk-Chvojhova, E., Determination of radio propagation elements due to a artificial Earth Satellite, Nature, 181, April 1958, p. 1195.

    Article  Google Scholar 

  244. Zschörner, H., Radio-Beobachtung von Erdsatelliten, Flugkörper, 9, 1960, p. 284.

    Google Scholar 

  245. Radio Observations of the Russian Earth Satellite, The Staff of the Mullard Radio Astronomy Observatory, Cambridge, Nature, 180, 1957, p. 879.

    Article  Google Scholar 

  246. How Hawaian Station »Hula« Tracks Orbiting Discoverer, Missiles and Rockets, April 8, 1960, p. 24.

    Google Scholar 

  247. Mistram (Missile Trajectory Measurement System), m/r, Feb. 27, 1961, p. 28.

    Google Scholar 

  248. Die ersten Navigationssatelliten Transit IB und IIA, RRF, 3, Bd. 4, p. 100.

    Google Scholar 

  249. Astronautics Information Seminar, Proceedings Tracking Programs and Orbit Determination (Jet Propulsion Lab.), ASTIA TAB, No. N 61 —11. — AD 246 042, Febr. 10, 1960.

    Google Scholar 

  250. AFMTC Instrumentation Handbook Second Edition, AFMTC, Patrick AFB, June 20, 1960, A STIA AD 242 915.

    Google Scholar 

  251. Secor (Firmenschrift), Cubic Corp., San Diego 11, Calif., Feasibility of Observing and Tracking a Small Satellite Object, Varo Manufacturing Co., Rep. No. 1641, 32, 1955.

    Google Scholar 

  252. Funkortung in der Luftfahrt, Frankfurter Fachtagung 1953, Teil 5: Sonderfragen der Funkortung im Luftraum und im Weltall; Bücherei für Funkortung BdZ, Verkehrs-und Wirtschaftsverlag, 1954.

    Google Scholar 

  253. Fehleranalyse eines terrestrischen Doppler-Navigationssystems mit Hilfe von Satelliten, Proc. IRE, Bd. 48, Heft 4, 1960, p. 507.

    Google Scholar 

  254. Azusa Tracking Equipment Mark II, Convair Astr., Nov. 1959, 1 Vol., ASTIA AD — 242 630 (60 — 4 — 3).

    Google Scholar 

  255. Bahnverfolgung von Satelliten mit einem CW-Sender und Interferometer, IRE Proc., Bd. 48, Heft 4, 1960, p. 663.

    Google Scholar 

  256. Beckmann, B., Die Ausbreitung der elektromagnetischen Wellen, Akad. Verlagsgesellschaft Leipzig, 1948.

    Google Scholar 

  257. Boor, H. A., und J. T. Randall, The Cavity Magnetron, Journal I.E.E., 93, Teil IIIA, 1946.

    Google Scholar 

  258. Bowen, E. G., Radar, Berlin 1960, VEB Verlag Technik.

    Google Scholar 

  259. Brewitt-Taylor, E. G., A Detailed Experimental Study of the Factors Influencing the Polar Diagram of a Dipole in a Parabolic Mirror, Journal I.E.E., 93, Teil IIIA, 1946.

    Google Scholar 

  260. Brüche, E., und A. Recknagel, Über die Phasenfokussierung bei der Elektronenbewegung in schnellveränderlichen elektrischen Feldern, 2. Phys., 108, März 1938.

    Google Scholar 

  261. Carter, D. S., Simple Television Antlimas, RCA, Rev. 4, Okt. 1939.

    Google Scholar 

  262. Clark, F. J., Radar Beacons for IRBM IICBM, IRE, Trans. Mil — 3, No. 4, Oct. 1959.

    Google Scholar 

  263. Condon, E. V., Forced Oscillations in Cavity Resonators, Journal Appl. Phys., 12, 1941.

    Google Scholar 

  264. Cutler, C. C., Parabolic Antenna Design for Microwaves, Proc. IRE, 35, 1947.

    Google Scholar 

  265. Davis, R. J., Das Radarbild einer rotierenden Winkelantenne, Astronautica Acta, V. 1, 1959.

    Google Scholar 

  266. Ecus, C. B., und J. A. Greenwood, Optical Masers in Space Navigation, Navigation, 8 (3), 1961.

    Google Scholar 

  267. Ferris, W. R., The Input Resistance of Vacuum Tubes as Ultra-High Frequency Amplifiers, Proc. IRE, 24, Jan. 1936.

    Google Scholar 

  268. Finlay, E. A., und W. B. Lasich, The Design of a Klystrom for the L-Band, C. S. I. R. Radio Research Laboratory, Melbourne, Report RP 238, 1945.

    Google Scholar 

  269. Fischer, H. J., Radartechnik, Leipzig 1956, Fachbuchverlag Leipzig.

    Google Scholar 

  270. Fisk, J. B., H. D. Hagstrum und P. L. Hartmann, The Magnetron As a Generator of Centimetre Waves, Bell Syst. Techn. Journ., 25 (1946).

    Google Scholar 

  271. Fremlin, J. H., A. W. Gent et al, Principles of velocity modulation, Journ. I.E.E., 93, Teil III A, 1946.

    Google Scholar 

  272. Friis, H. T., Noise Figures of Radio Receivers, Proc. IRE, 32, Juli 1944.

    Google Scholar 

  273. Frits, H. T., und W. D. Lewis, Radar Antennas, Bell System, Techn. Journal, 26 (1947).

    Google Scholar 

  274. Gooden, J. S., The Use of Geometrical Optical Theory in the Design of Mirror Shapes for Scanning Aerials, CSIR Radiophysics Laboratory, Report RP 242, 1945.

    Google Scholar 

  275. Gundlach, F. W., Grundlagen der Höchstfrequenztechnik, Springer 1950.

    Book  Google Scholar 

  276. Hey, J. S., und G. S. Stewarr, Radar Observation of Meteors, Proc. Phys. Soc., 1947.

    Google Scholar 

  277. Holahan, J., What Have We Got to Counter the ICBM-Threat? Space/Aeronautics, 36 (5), 1961.

    Google Scholar 

  278. Ihee, W. E., und H. D. Olsen, Radar Tracking of Earth Satellites, A STIA TAB, No. N 61 — 1 — 2. — AD — 246 374.

    Google Scholar 

  279. Jenny, H. K., Traveling-Wave Teebes Extend Microwave Power, Space/Aeronautics, 36 (4), 1961.

    Google Scholar 

  280. La Fond, C. D., Laser, Fiber Optics Technologies Join, m/r, 8. 5. 1961.

    Google Scholar 

  281. Lawson, L. D., Some Methods for Determining the Power Guice of Microwave aerials, Journal I.E. E., 95, 1948.

    Google Scholar 

  282. August 1957, ASTIA AD — 150 863 (N 58–5).

    Google Scholar 

  283. Melzer und Thaler, Ditection Range Predictions for Pulse Doppler Radar, Proc. IRE, 49 (8), August 1961.

    Google Scholar 

  284. Meyer, W. E., Moderne Funkortung, Wolfshagen-Scharbeutz, Verlag Drei Glocken GmbH.

    Google Scholar 

  285. Millman, G. H., Cosmic Noise Limits Long Range Radar, Space/Aeronautics, 35 (1), 1961.

    Google Scholar 

  286. Mofenson, J., Radar Echoes From the Moon, Electronics, 19, 1946.

    Google Scholar 

  287. Nagy, F., New Averaging Program for a Millshane Hill Radar Site, A STIR TAB, No. N 61 — 1 — 2. — AD 246776.

    Google Scholar 

  288. Neumann, S., Optische Wellen als Informationsträger, Flugkörper, Heft 4, 1961.

    Google Scholar 

  289. Oliphant, W. D., The Electromagnetic Horn, Electronic Engng., 21, 1949.

    Google Scholar 

  290. Penrose, H. E., und R. S. H. Boulding, Grundlagen und Praxis der Radartechnik, Stuttgart 1958/59, Berliner Union (aus d. Engl.).

    Google Scholar 

  291. Popp, Paal und Taeger, »Radar«, Fachverlag Schiele und Schön GmbH, Berlin.

    Google Scholar 

  292. Pucketta, A. E., und S. Ramo, Guided Missile Energeering, New York 1959, McGraw-Hill Book Comp., Inc.

    Google Scholar 

  293. Rehbock, E., Ortung und Lenkung in Raum, NTZ, Heft 2, 1959.

    Google Scholar 

  294. Richardson, R. E., Some Pulse — Doppler Radar Design Considerations.

    Google Scholar 

  295. Röhrick, K., Raketenerfassung mittels Weitesradar, ZfW, 6 (9), 1958.

    Google Scholar 

  296. Roessger, E., Wetterradar, Dopplerradar, Technisch-wissenschaftliche Beschreibung, Inst. f. Luftfahrzeugführung und Luftverkehr, Techn. Univers. Berlin, 15. 4. 1961.

    Google Scholar 

  297. Schade, O. H., Analysis of Rectifier Operation, Proc. IRE, 31, 1943.

    Google Scholar 

  298. Slater, I. C., Resonant Modes of the Magnetron, Massachusetts Inst. of Techn., Radiation Lab., Rep. 43–9, Aug. 1942.

    Google Scholar 

  299. Southworth, C. C., und A. P. King, Metal Horns as Directive Receivers of Ultra Short Waves, Proc. IRE, 27, 1939.

    Google Scholar 

  300. Williams, F. C., und N. F. Moody, Ranging Circuits, Linear Time Base Generators and Associated Circuits, Journ. I.E. E., 93, Teil MA, 1946.

    Google Scholar 

  301. Zschirnt, H. H., Radar Tracking of Guided Missile — Proposed Hight Precision Direction Finding System, N. S. Air Force, Tech. Rept. No. F-TR-2166-B-ND, May 1948.

    Google Scholar 

  302. Radar–A Report on Science at War, Released by the United States Joint Board on Scientific Informations Policy, August 1945.

    Google Scholar 

  303. Radio Wave Propagation (N. D. R. C. Report), New York 1949, Academie Press.

    Google Scholar 

  304. Kleines Radarhandbuch, Bücherei der Funkortung, Dortmund 1958, Verkehrs-und Wirtschaftsverlag.

    Google Scholar 

  305. Hughes Develops Space Radar, m/r, 6. 3. 1961.

    Google Scholar 

  306. C-Band Radar Transponder Functions as Tracking Aid, Space/Aeronautics, 36 (4), 1961.

    Google Scholar 

  307. -Mile Anti–ICBM Radar daimed, m/r, Oct. 1957.

    Google Scholar 

  308. A Classifikation of Radar Reflektors in Use at Present Coast Guard, Washington D. C., 26. Sept. 1960, ASMA AD–242 001 (60–4–3).

    Google Scholar 

  309. Neuer Radar-Höhenmesser von Bendix, Flugwelt, 14 (3), 1962.

    Google Scholar 

  310. Re-Entry Landing System, Space/Aeronautics, 36 (4), 1961.

    Google Scholar 

  311. Codidar, Journal of Am. Society of Naval Engineers, 73 (4), Nov. 1961.

    Google Scholar 

    Google Scholar 

  312. Laser, m/r, 10. 7. 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Rößger, E., Zehle, H. (1963). Raumfahrzeugortung. In: Grundlagen der Raumfahrzeugführung. Forschungsberichte des Landes Nordrhein-Westfalen, vol 1258. VS Verlag für Sozialwissenschaften, Wiesbaden. https://doi.org/10.1007/978-3-663-02530-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-02530-6_3

  • Publisher Name: VS Verlag für Sozialwissenschaften, Wiesbaden

  • Print ISBN: 978-3-663-00617-6

  • Online ISBN: 978-3-663-02530-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics